

 Programming XSLT

 stylesheets for Adlib

 and Axiell

Axiell ALM Netherlands BV

Copyright © 2013-2022 Axiell ALM Netherlands BV® All rights re-
served. Adlib® is a product of Axiell ALM Netherlands BV®

The information in this document is subject to change without notice
and should not be construed as a commitment by Axiell ALM Nether-
lands BV. Axiell assumes no responsibility for any errors that may
appear in this document. The software described in this document is
furnished under a licence and may be used or copied only in accord-
ance with the terms of such a licence. While making every effort to
ensure the accuracy of this document, products are continually being

improved.

As a result of continuous improvements, later versions of the products
may vary from those described here. Under no circumstances may this
document be regarded as a part of any contractual obligation to sup-
ply software, or as a definitive product description.

Contents

Introduction ... 1

1 An introduction to XML and XSLT ... 3
1.1 What is XML ... 3

1.1.1 XML document requirements .. 3
1.1.2 How XML documents may be structured 5
1.1.3 Available XML types .. 6

 Unstructured XML from wwwopac.ashx or adlwin.exe 6
 Grouped XML as produced by wwwopac.ashx 8
 Grouped XML as produced by adlwin.exe 10

1.2 What is XSLT .. 14
1.2.1 A bare stylesheet .. 15
1.2.2 XPath and templates ... 16
1.2.3 Extending the stylesheet to produce proper HMTL 18
1.2.4 Using CSS stylesheets ... 20
1.2.5 Applying HTML tables .. 24
1.2.6 Functions, variables and parameters in XPath 25

 Adlib and Axiell Collections parameters 28
1.2.7 Getting an example of the generated Adlib XML 30
1.2.8 Best practice .. 31
1.2.9 Other uses of XML and XSLT... 31
1.2.10 More information ... 31

2 Creating output formats .. 33
2.1 Grouped XML for XSLT export/output formats....................... 33

2.1.1 Setting the XML type in Designer 33
2.1.2 Advantages of grouped XML for use in stylesheets 35
2.1.3 Examples ... 36

2.2 Printing images via an XSLT stylesheet 38
2.2.1 Example Adlib output formats 40
2.2.2 Example Axiell Collections output format........................ 48

2.3 Accessing the current user name in XSLT 54
2.4 Printing barcode labels to a normal printer 54
2.5 Creating text labels from HTML fields 61

2.5.1 Printing, export and wwwopac output 66
2.5.2 Notes .. 67

3 Stylesheets for Adloan slips .. 69
3.1 Available Adloan XML output .. 72

 Issues ... 72
 Returns ... 73
 Reservations .. 74

3.2 Adloan version differences ... 75

4 A web browser box display format 77
4.1 Web browser box setup ... 77

4.1.1 Examples ... 80
4.1.2 Adding hyperlinks to your stylesheet 89
4.1.3 Error handling and testing .. 89

5 Adlib Office Connect stylesheets .. 91
5.1 The Adlib Office Connect plugin .. 91
5.2 The standard stylesheets ... 91

5.2.1 Adding interface language dependent texts 94

 1 9-8-2022

Introduction

Underneath the surface of the graphical user interface of your Adlib
application or Axiell Collections application, records are handled by the
software in XML format, which basically is a hierarchically structured

text format. Normally, you won’t encounter the XML itself, but you’ll
have to know about it if you want to start using XSLT to create output
formats or to edit presentation formats for Adlib Office Connect, for
your Adlib Internet Server web application or for web browser boxes
on application screens, to name but a few. XSLT is a stylesheet lan-
guage (itself in XML format) to “transform” an XML document to some

other document; this may be an XML document with the same struc-

ture but with changes made to the data in it, or it can be a differently
structured XML document, or an HTML document, a PDF, or some
other text file.
XML and XSLT are third-party programming technologies, so to
properly learn all about them we recommend studying other sources
than the document before you. In this manual though, you’ll get a

quick introduction followed by actual examples applicable to the Adlib
or Axiell software, enough to get you started properly.
Some functionality requires Adlib 7.1 or higher.

 3 9-8-2022

1 An introduction to XML and XSLT

1.1 What is XML

XML (eXtentible Markup Language) provides a means of hierarchically
structuring data in a text file. In contradiction to HTML (which is in-
tended to lay out text or data for display in web browsers), it does not
offer layout instructions. Other than a few PIs (Processing Instructions
providing metadata about the document for the processor, enclosed in
<? ?>) at the start of the file, the only language it contains consists

of tags, the name of which can be anything the maker of the XML

document desired. Every separate piece of data must be enclosed by a
start and end tag, formatted like <tag>data</tag>, together called an

element or node, which may be spread over different lines. The follow-

ing is an example of a simple yet complete XML document (not Adlib
XML in any way though), although no title has been specified for the
third book:

<?xml version="1.0" ?>

<!-- my comment -->

<booklist>

 <book isbn="901234567">

 <author>Hesse, Herman</author>

 <author>Claus, Hugo</author>

 <title>Siddharta</title>

 </book>

 <book>

 <author>Wolkers, Jan</author>

 <title>Terug naar Oegstgeest</title>

 <publisher>Summer & Köning</publisher>

 </book>

 <book>

 <author>Austen, Jane</author>

 </book>

</booklist>

Every XML document has to start with: <?xml version="1.0" ?> or

<?xml version="2.0" ?> to tell the processor which XML version is

implemented in this document. Optionally, you could also mention
here the Unicode representation in which this file has been saved,
e.g.: <?xml version="1.0" encoding="UTF-8"?>

1.1.1 XML document requirements

There are some further rules to putting together an XML document.

1. Each XML document can only have one root tag. In the example
above this is booklist.

An introduction to XML and XSLT

9-8-2022 4

2. Tags must have sensible names, so that others can easily under-

stand the document, and for the sake of interoperability. If it con-

tains Adlib data, those names need not be the same as Adlib field
names per se.

3. Every element must be closed. A start tag without an end tag
corrupts an XML document. If there is no data between a start and
end tag, this may be indicated by a single combined tag to open
and close at once: <tag/>.

Note that there’s a difference between an empty tag, for instance
<title></title> and no title tags at all, which is relevant to

XSLT stylesheets processing an XML document.

4. Tags are nested. In the example you can see that the authors
Hesse and Claus are nested within the first book tag, and that the

book tags are nested within the root tag booklist. This nesting is

crucial to keeping data together, like it is in Adlib records.

5. The increasing indentation (whitespace) in front of nested tags, as
shown in the example, is not strictly necessary, but it keeps the
document readable.
Visual Studio is handy for writing and editing XML docs, because it
suggests end tags and adds coloring, but you can edit an XML doc
in any text editor, as long as you save the file in Unicode UTF-8

representation (if you want to use the XML file in Adlib).

6. A tag may have attributes. An attribute is metadata included in a
start tag, and it’s purpose is to describe something about the data
in the current element or all elements nested in it. It should be in
the format <tag attribute="value">. In our example there is

one attribute for the tag book: <book isbn="901234567">. This

may not be a good example because ISBN is a field in an Adlib
record, and is not really considered metadata in there. But the
maker of the document decides what is metadata and what isn’t.
The language of records could also be specified this way, for ex-

ample: <booklist language="en-us">. Every start tag may have

zero, one or more attributes; attributes should be separated by a

space. And every attribute must have a unique name, specified by
the maker of the document, and it cannot contain spaces. The
double quotes around the value are mandatory, a value in be-
tween isn’t. Note that double quotes come in different varieties,
but should be the straight version, as follows: ", not “ or ” as cre-
ated by MS Word for example.

 An introduction to XML and XSLT

 5 9-8-2022

7. A few characters have to be “escaped” (meaning: replaced) when

used in the data itself, because they are reserved characters to

the XML language. These are:

Character Escape sequence to use in data

< <

> >

‘ '

“ "

& &

In our example we see an illustration of this: <publisher>Summer

& Köning</publisher>. Note that other special characters in

data, for instance á or € don’t need to be escaped because this is
a Unicode file.

8. XML tags and attributes are case-sensitive. So <Author> is not the

same as <author>.

The easiest way of checking whether an XML document doesn’t con-
tain any errors is by double-clicking it in Windows Explorer. If the file

opens normally in Internet Explorer, there are no XML syntax errors.
However if there are syntax errors, then the file doesn’t open and IE

displays an error message. So, Internet Explorer can validate an XML
document.

1.1.2 How XML documents may be structured

If you were to write an XML document yourself, you would in principle
be free to structure it any way you wanted. But if XML documents
must be exchangeable between diverse software programs, you’ll
probably want the XML to adhere to some rules. Because you’ll not
only have software producing XML but also software to do something
with the XML input (like the Adlib Internet Server web application or

Adlib Office Connect for example), and therefor the hierarchy in the

XML file must be what the software expects it to be.

For Adlib you usually won’t write XML documents manually: they are
produced internally by Adlib as the (intermediate and/or end) result of
an export or print job or as the search result from wwwopac. So the
software will by default produce XML documents, which adhere to
earlier specified rules for Adlib XML files, together forming the so-
called Adlib XML schema. Whenever third-party software produces

XML documents to be processed by Adlib software at some point, it
must also comply to this schema.

An introduction to XML and XSLT

9-8-2022 6

There are two methods to specify rules to which XML files must ad-

here, via a DTD (Document Type Definition) or XSD (XML Schema

Definition).

• DTD is an old-fashioned way, although the EAD (Encoded Archival
Description) still uses it. A disadvantage of the DTD is its syntax,
which allows for files to become unreadable because of their com-
plexity.

• XSD, the XML Schema Definition is DTD’s successor. It is an XML

file itself.

Adlib XML is formatted according to the adlibXML.xsd (which can be
viewed in full at http://www.adlibsoft.com/adlibXML.xsd). The most

important thing you need to know about Adlib XML is that only the
XML tags of the three highest levels have been defined, namely:
adlibXML (root tag), recordlist (may occur only once), record (may

occur indefinitly). Further, there is a diagnostic tag on the level of

the recordlist, which contains metadata about the search, such as

the elapsed time and the number of records that were found. The
fields in the records are contained within each record element and
have the English field name by which they are declared in the data-

base .inf file. The structure of an Adlib record itself is not defined in
the schema definition because this differs per database and XML type.

1.1.3 Available XML types

Within the Adlib XML schema, different XML types are possible, mainly

separated into unstructured and grouped XML, but grouped XML still
has variations. XML is either produced by adlwin.exe (which runs your
Adlib Museum, Library and Archive applications for Windows) or by
wwwopac.ashx (API) (which processes Adlib data for the Internet
Server web application or Adlib Office Connect).

◼ Unstructured XML from wwwopac.ashx or adlwin.exe

Unstructured XML can be produced by wwwopac.ashx or be exported
by adlwin.exe, if requested so.

Unstructured XML has a flat structure: all fields and their occurrences
are immediate children of the record element. If a field has multiple

occurrences, then all those occurrences are listed directly underneath
each other.

• Of a multilingual field (if present), only the value of the currently

searched data language is returned by wwwopac.ashx, and it is
returned directly in the field node, without language or invariancy
attributes. Adlwin.exe on the other hand, will export all language
values.

http://www.adlibsoft.com/adlibXML.xsd

 An introduction to XML and XSLT

 7 9-8-2022

• Of an enumerative field, wwwopac.ashx only returns the neutral

value, directly in the enumerative field node, unless you specify

the presentation language with the language parameter followed

by a standard language code without square brackets around it, in
which case only the relevant translation is returned, directly in the
enumerative field node. Adlwin.exe on the other hand, returns the
neutral value as an attribute to the field node while all user inter-
face translations are listed inside the field element, in a text sub-

node per language.

Below you can see an abbreviated example of an adlwin.exe export of
a Dutch record with repeated object_name nodes and a record_type

enumerative field, to unstructured XML:

<?xml version="1.0" encoding="UTF-8" ?>

<adlibXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.adlibsoft.com/

adlibXML.xsd">

<recordList>

 <record>

 <priref>139</priref>

 <institution.name>Nederlands Textielmuseum</institution.name>

 <description>Gordijnstof met voorstelling van kookboeken.

 Verticaal ruggen van boeken in verschillende breedten en

 kleuren. Op de ruggen titels van kookboeken.</description>

 <institution.place/>

 <production.date.end>1960</production.date.end>

 <reproduction.format/>

 <reproduction.reference>06243.jpg</reproduction.reference>

 <object_number>00216243</object_number>

 <object_name>interieurtextiel</object_name>

 <object_name>raambedekking</object_name>

 <object_name>gordijnstof</object_name>

 <title>Gordijnstof met kookboeken</title>

 <record_type option="OBJECT" value="OBJECT">

 <text language="0">single object</text>

 <text language="1">enkelvoudig object</text>

 <text language="2">objet individuel</text>

 <text language="3">Einzelnes Objekt</text>

 </record_type>

 </record>

</recordList>

<diagnostic>

 <xmltype>Unstructured</xmltype>

 <hits>1</hits>

 <dbname>collect</dbname>

 <dsname>intern</dsname>

</diagnostic>

</adlibXML>

An introduction to XML and XSLT

9-8-2022 8

◼ Grouped XML as produced by wwwopac.ashx

Grouped XML is hierarchically structured XML: fields may be a direct
child of the record element, or when a field group name has been

defined in the data dictionary, a child of a group element with the
name of the group. In this case the group element is a child of the
record element. There are differences between the grouped XML of

records retrieved for brief display and that of a single record retrieved
for detailed display. The rest of this paragraph considers the grouped
XML retrieved for detailed display; examples of both types of XML can

be studied at http://api.adlibsoft.com/site/api/functions/search by first
adding &xmltype=grouped to the example queries, if needed, and

then executing them.

If at least one of the fields in a field group has multiple occurrences,
then the entire field group is repeated as many times. Empty occur-
rences of fields in a field group are retrieved as well. The main ad-
vantage of the grouped type over the unstructured one is that it be-
comes easier to process repeated occurrences of grouped fields, using

XSLT. In unstructured Adlib XML, all fields and field occurrences are
just listed in one long list inside the <record> node, whilst in grouped

Adlib XML, fields are grouped within a field group node (if a relevant
field group exists in the data dictionary) and that field group node is
repeated for each field group occurrence.

• Of a multilingual field (if present), all language values are re-
turned as value subnodes of the field node; the language code

and invariancy flag per language value are returned as attributes
to the value nodes.

• Of an enumerative field, both the neutral value and all available

translations of the enumerative value are returned, in value sub-

nodes underneath the enumerative field node; the presentation
languages are attributes to the value nodes, and are indicated by

an Adlib language number, not by their language code. The
presentation language parameter does not apply to the grouped

XML output type.

A partial example of grouped wwwopac.ashx output of a single record
retrieved in detail:

<?xml version="1.0" encoding="UTF-8"?>

<adlibXML>

 <recordList>

 <record selected="False" modification="2012-05-31T11:11:27"

 created="2007-02-07T14:40:36" priref="10">

 <acquisition.date>1816</acquisition.date>

 <administration_name>PDP</administration_name>

 <content.person.name>Venus</content.person.name>

 <content.person.name>Cupid</content.person.name>

http://api.adlibsoft.com/site/api/functions/search

 An introduction to XML and XSLT

 9 9-8-2022

 <content.person.name.type>

 <value lang="neutral">PERSON</value>

 <value lang="0">Person</value>

 <value lang="1">persoon</value>

 <value lang="2">personne</value>

 <value lang="3">Person</value>

 <value lang="4">شخص إسم</value>

 <value lang="6">πρόσωπο</value>

 </content.person.name.type>

 <creator.role.lref>2</creator.role.lref>

 <Dimension>

 <dimension.value>118.1</dimension.value>

 <dimension.type>height</dimension.type>

 <dimension.type.lref>6</dimension.type.lref>

 <dimension.unit>cm</dimension.unit>

 <dimension.unit.lref>8</dimension.unit.lref>

 </Dimension>

 <Dimension>

 <dimension.value>208.9</dimension.value>

 <dimension.type>width</dimension.type>

 <dimension.type.lref>7</dimension.type.lref>

 <dimension.unit>cm</dimension.unit>

 <dimension.unit.lref>8</dimension.unit.lref>

 </Dimension>

 <institution.name>The Fitzwilliam Museum</institution.name>

 <institution.name.lref>4</institution.name.lref>

 <institution.place/>

 <Material>

 <material.part>medium</material.part>

 <material>oil paint</material>

 </Material>

 <Material>

 <material.part>support</material.part>

 <material>canvas</material>

 </Material>

 <object_category>painting</object_category>

 <object_category.lref>1</object_category.lref>

 <object_number>109</object_number>

 <priref>10</priref>

 <Production>

 <creator>Palma, Jacopo il Vecchio</creator>

 <creator.date_of_birth/>

 <creator.date_of_death/>

 <creator.history/>

 <creator.qualifier/>

 <creator.role>painter</creator.role>

 <production.notes/>

 <production.place/>

 </Production>

 <Title>

 <title>

 <value lang="el-GR" invariant="false">Venus and

 Cupid</value>

 </title>

 </Title>

An introduction to XML and XSLT

9-8-2022 10

 </record>

 </recordList>

 <diagnostic>

 <hits>1</hits>

 <xmltype>Grouped</xmltype>

 <first_item>1</first_item>

 </diagnostic>

</adlibXML>

• In the grouped wwwopac.ashx output, the record priref is an at-

tribute of the <record> node, but appears as a separate node as

well.

• Up to and including wwwopac.ashx version 3.6.1173.0, if in the

grouped wwwopac.ashx output an accessible field to be retrieved
was part of a data dictionary field group, then all fields from the
field group would be retrieved, even if they were empty. In later
versions, only the available fields set in adlibweb.xml will be re-
trieved.

• In the grouped wwwopac.ashx output, the names of the subnodes
of a linked field are the names of the linked field in the primary

database (which are the target fields for any merged-in fields).

• In the grouped wwwopac.ashx output, the linkref field has its own
subnode underneath the linked field, containing the actual linkref.

◼ Grouped XML as produced by adlwin.exe

Your adlwin.exe application, like Adlib Museum or Library, can export
to grouped XML as well as to unstructured XML. And internally, you
can use record data in grouped XML format to create a display format
for a web browser box for or to build an output format, using XSLT.

Grouped XML is hierarchically structured XML: fields may be a direct
child of the record element, or when a field group name has been

defined in the data dictionary, a child of a group element with the
name of the group. In this case the group element is a child of the
record element. Unlike the grouped XML produced by wwwopac.ashx,

there is no difference between the grouped XML of multiple records

exported or printed and that of a single record being exported, printed
or displayed in a web browser box.

If at least one of the fields in a field group has multiple occurrences,
then the entire field group is repeated as many times. Empty occur-
rences of fields in a field group are retrieved as well. The main ad-
vantage of the grouped type over the unstructured one is that it be-

comes easier to process repeated occurrences of grouped fields, using
XSLT. In unstructured Adlib XML, all fields and field occurrences are
just listed in one long list inside the <record> node, whilst in grouped

 An introduction to XML and XSLT

 11 9-8-2022

Adlib XML, fields are grouped within a field group node (if a relevant

field group exists in the data dictionary) and that field group node is

repeated for each field group occurrence.

• Of multilingual fields (if present), all language values are returned
in repetitions of the field node itself or in repetitions of the linked-
to field if it concerns a multilingual linked field; the language code
and possibly the invariancy flag per language value are returned
as attributes to the relevant field nodes.

 <object_name linkref="187" linkfield="term"

 linkreffield="broader_term.lref" linkdb=" C:\Adlib

 Software\Model application 4.2 NL\data++thesau">

 <term occurrence="1" lang="nl-NL">Ansichtkaart</term>

 <term occurrence="1" lang="en-GB" invariant="true">

 Postcard</term>

 </object_name>

 <Title>

 <title.type />

 <title occurrence="1" lang="de-DE">Köln</title>

 <title.notes />

 </Title>

• Of an enumerative field, the neutral value is returned as an attrib-
ute to the field node while all user interface translations are listed

inside the field element, in a text subnode per interface language

• The record priref appears only as a separate element.

• The names of the subnodes of a linked field (like object_name)

are the names of the linked-to field and any merged-in fields from
the linked database. For example: the <term> node underneath

<object_name> refers to the linked-to term field in the linked da-

tabase THESAU.

• The linkref, linkfield, linkreffield and linkdb of a linked

field are attributes to the linked field element.

A partial example of a Dutch record with repeated object_name nodes

and a record_type enumerative field can be seen below:

<?xml version="1.0" encoding="UTF-8" ?>

<adlibXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.adlibsoft.com/

 adlibXML.xsd">

 <recordList>

 <record>

 <priref>139</priref>

 <current_location linkref="529" linkfield="location"

 linkreffield="2a" linkdb="C:\Adlib Software\Model application

 4.2 NL\data+Location">

 <location>4.10.03</location>

 <location.type />

An introduction to XML and XSLT

9-8-2022 12

 </current_location>

 <current_location.type />

 <current_location.lref>529</current_location.lref>

 <Description>

 <description.name />

 <description.date />

 <description>Gordijnstof met voorstelling van kookboeken.

 Verticaal ruggen van boeken in verschillende breedten en

 kleuren. Op de ruggen titels van kookboeken.</description>

 </Description>

 <institution.name linkref="150" linkfield="name"

 linkreffield="language.lref" linkdb="C:\Adlib Software\Model

 application 4.2 NL\data+people">

 <name>Nederlands Textielmuseum</name>

 <address.place />

 <institution_code />

 </institution.name>

 <institution.place />

 <Production_date>

 <production.date.end>1960</production.date.end>

 <production.date.start.prec />

 <production.date.start>1950</production.date.start>

 <production.date.end.prec />

 </Production_date>

 <production.date.notes>ca.</production.date.notes>

 <Reproduction>

 <reproduction.format />

 <reproduction.reference linkref="180"

 linkfield="reference_number" linkreffield="fn"

 linkdb="C:\Adlib Software\Model application 4.2

 NL\data+photo">

 <format />

 <reference_number>06243.jpg</reference_number>

 <production_date />

 <reproduction_type />

 <creator />

 </reproduction.reference>

 <reproduction.date />

 <reproduction.notes />

 <reproduction.type />

 <reproduction.creator />

 <reproduction.reference.lref>180

 </reproduction.reference.lref>

 </Reproduction>

 <Object_name>

 <object_name.authority linkref="0" linkfield="term"

 linkreffield="lx" linkdb="C:\Adlib Software\Model

 application 4.2 NL\data+thesau" />

 <object_name linkref="411" linkfield="term"

 linkreffield="broader_term.lref" linkdb=

 "C:\Adlib Software\Model application 4.2 NL\data+thesau">

 <term>interieurtextiel</term>

 </object_name>

 <object_name.notes />

 An introduction to XML and XSLT

 13 9-8-2022

 <object_name.type linkref="0" linkfield="term"

 linkreffield="lw" linkdb="C:\Adlib Software\Model

 application 4.2 NL\data+thesau" />

 <object_name.lref>411</object_name.lref>

 <object_name.type.lref />

 <object_name.authority.lref />

 </Object_name>

 <Object_name>

 <object_name.authority linkref="0" linkfield="term"

 linkreffield="lx" linkdb="C:\Adlib Software\Model

 application 4.2 NL\data+thesau" />

 <object_name linkref="442" linkfield="term"

 linkreffield="broader_term.lref" linkdb="C:\Adlib

 Software\Model application 4.2 NL\data+thesau">

 <term>raambedekking</term>

 </object_name>

 <object_name.notes />

 <object_name.type linkref="0" linkfield="term"

 linkreffield="lw" linkdb="C:\Adlib Software\Model

 application 4.2 NL\data+thesau" />

 <object_name.lref>442</object_name.lref>

 <object_name.type.lref />

 <object_name.authority.lref />

 </Object_name>

 <Object_name>

 <object_name.authority linkref="0" linkfield="term"

 linkreffield="lx" linkdb="C:\Adlib Software\Model

 application 4.2 NL\data+thesau" />

 <object_name linkref="443" linkfield="term"

 linkreffield="broader_term.lref" linkdb="C:\Adlib

 Software\Model application 4.2 NL\data+thesau">

 <term>gordijnstof</term>

 </object_name>

 <object_name.notes />

 <object_name.type linkref="0" linkfield="term"

 linkreffield="lw" linkdb="C:\Adlib Software\Model

 application 4.2 NL\data+thesau" />

 <object_name.lref>443</object_name.lref>

 <object_name.type.lref />

 <object_name.authority.lref />

 </Object_name>

 <record_access.owner>Administrator</record_access.owner>

 <Title>

 <title.type />

 <title>Gordijnstof met kookboeken</title>

 <title.notes />

 </Title>

 <record_type option="OBJECT" value="OBJECT">

 <text language="0">single object</text>

 <text language="1">enkelvoudig object</text>

 <text language="2">objet individuel</text>

 <text language="3">Einzelnes Objekt</text>

 </record_type>

 </record>

 </recordList>

An introduction to XML and XSLT

9-8-2022 14

 <diagnostic>

 <xmltype>Grouped</xmltype>

 <hits>1</hits>

 <dbname>collect</dbname>

 <dsname>intern</dsname>

 </diagnostic>

</adlibXML>

As mentioned in the paragraph above, the main advantage of the
grouped type over the unstructured one is that it becomes easier to
process repeated occurrences of grouped fields, using XSLT. In un-

structured Adlib XML, all fields and field occurrences are just listed in
one long list inside the <record> node, whilst in grouped Adlib XML,

fields are grouped within a field group node (if a relevant field group

exists in the data dictionary) and that field group node is repeated for
each field group occurrence.

Simply export one or more records to the grouped XML format from
within your Adlib application and open the resulting file in Internet
Explorer to study the result and learn more about Adlib grouped XML

as generated by adlwin.exe.

1.2 What is XSLT

XSL(T) stands for eXtensible Stylesheet Language Transformations. It

is a pattern-based language and has characteristics of programming
languages as well, which you use to “transform” an XML document to
some other document; this may be an XML document with the same
structure but with changes made to the data in it, or it can be a differ-

ently structured XML document, or an HTML document, a PDF, CSV or
some other text file. During transformation, the data from the original
XML document can also be processed in other ways.

Adlib internally represents records as XML and when you execute an
XSLT export format or output format or display it through a web
browser box on a record detail screen, this XML is passed on to the
associated stylesheet which converts the XML to the desired format:

this target format would need to be HTML if it concerns an output
(print) format or display format, or any desired format (XML, HTML,
plain text, etc.) if it concerns an export format. As XML-to-XML
stylesheets, it allows third-party XML export or search results to be
tranformed to XML that Adlib can work with, or vice versa. As XML-to-
HTML stylesheets, it allows Adlib XML, like produced by wwwopac.ashx
and internally by adlwin.exe to be transformed into fully laid out pages

presentable like web pages in Internet Explorer or in a web browser
box or to be printed with a nice layout.

 An introduction to XML and XSLT

 15 9-8-2022

Originally XSLT was just named XSL, as it was thought to primarily

function as layout language to produce HTML output, but as it turned

out that it could be used for other transformations as well, the “T” was
added. For stylesheet names it is irrelevant whether you use the ex-
tension .xsl or .xslt: there is no functional difference.

You can apply a stylesheet to an XML document either:

• programmatically via the settings file of a web application like the
Adlib Internet Server of Adlib Office Connect;

• by linking the stylesheet to your Adlib application as an output
(print) format, an export format or web browser box display for-
mat, using Adlib Designer;

• by hardcoding a reference to the stylesheet in the XML document.

In all cases you need a “transformation engine” to do the actual trans-
forming and produce output. Luckily, such an engine is by default part
of Internet Explorer, Firefox, the .Net platform, and MSXML.

If you hardcoded a reference to a (XML-to-HTML) stylesheet in an XML
document, then all you have to do to apply the transformation is dou-
ble-click the XML document in your Windows Explorer: it will open as
an HTML page in Internet Explorer (although you cannot view or save
the actual HTML code, since it has been generated dynamically). Note
that a so-called XML-parser only reads XML, it is not necessarily linked

to a tranformation engine.

1.2.1 A bare stylesheet

Each stylesheet starts with the following:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/

 XSL/Transform">

and ends with: </xsl:stylesheet>

XSLT 3.0 and earlier versions are supported from Collections 1.14:
only XSLT 1.0 was supported before that, in Adlib and Collections, not

XSLT 2.0. Of XML, both version 1.0 and 2.0 are supported, and XSLT
1.0 can be used in an XML 2.0 document if needed.

The header may contain a third line to specify the type of output this
stylesheet will generate. For HTML this is: <xsl:output meth-
od="html"/>

In between you specify the actual patterns. XSLT has a syntax similar
to XML, with PIs (as above), and <namespace:name>output

</namespace:name> elements. The namespace you always use is: xsl.

An introduction to XML and XSLT

9-8-2022 16

The names are XSLT keywords or functions, since the xsl Name Space

applies. XSLT is also case-sensitive.

1.2.2 XPath and templates

Suppose we have the following XML document (not Adlib XML):

<?xml version="1.0" ?>

<?xml-stylesheet type="text/xsl" href="books.xslt"?>

<!-- my comment -->

<booklist>

 <book isbn="901234567">

 <author>Hesse, Herman</author>

 <author>Claus, Hugo</author>

 <title>Siddharta</title>

 </book>

 <book>

 <author>Wolkers, Jan</author>

 <title>Terug naar Oegstgeest</title>

 <publisher>Summer & Köning</publisher>

 </book>

 <book>

 <author>Austen, Jane</author>

 </book>

</booklist>

A reference to a stylesheet called books.xslt we’re about to create (in
the same folder), is hardcoded in the XML document, as you can see,
so it will be transformed through the stylesheet by Internet Explorer
as soon as you open it.

XPath is similar to a path in the folder structure in Windows, but it

applies to an XML document. For example, the XPath of any author in
this document is /booklist/book/author. This is relevant for the tem-
plates in your stylesheet. In XSLT, templates are the basis for the
intended transformation: they contain the functions and text or HTML
code to be applied respectively added to XML elements which you
consider to be a pattern. A very simple example of a stylesheet

books.xslt for this XML file might clarify this:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/booklist">

 <xsl:apply-templates select="//author"/>

 </xsl:template>

 An introduction to XML and XSLT

 17 9-8-2022

 <xsl:template match="author">

 anonymous

 </xsl:template>

</xsl:stylesheet>

Two templates have been defined in here. What the transformation
engine does, is it looks for template matches which it can apply, from
the root of all XPaths. Whether it can apply a template depends on

whether the XPath node to match is accessible from the root node. In
the example above we intend to look for every occurrence of an <au-

thor> element in the XML file and replace it’s content by the text

“anonymous”. From the root node the /booklist node is accessible, but

from there the author node is only available if we precede it by “//”:
this means the author node can occur anywhere in an XPath. The re-
sult of this stylesheet applied to the example XML file is the following:

If we were to leave out “//” the match could not be made, and apply-
ing the stylesheet would result in an empty page. But if you know at

what level in an XPath the author node occurs you may also point
directly to it, in our case via:

<xsl:template match="/booklist">

 <xsl:apply-templates select="book/author"/>

</xsl:template>

From the result you can deduce how the transformation works. There
are two templates, but the author template cannot be matched from

the root of XPath, the /booklist can be matched though. So the trans-
formation process enters into this template for instructions about how

to transform the /booklist node of the XML file, and this node also
becomes the current XPath level. From this node we want to explicitily
call the author template, which we do with: apply-templates se-

lect="<relative Xpath to desired template>". So from the /booklist

node we can access the author template by selecting either

book/author or //author.

And although we only call the author template once, it is automatical-

ly applied to all author elements in the XML file, at the selected XPath
level: /author elements placed directly underneath the /booklist node

An introduction to XML and XSLT

9-8-2022 18

for example, would not be matched.

In the displayed result we can also see that the titles and publisher

from the XML file have been ignored; this is because we haven’t speci-
fied templates for these elements yet.

By the way, if the XSLT file does exist (in the same folder), but has no
templates specified, then the “default” template is used to lay out the
XML to HTML, which results in a string of plain text.

1.2.3 Extending the stylesheet to produce proper HMTL

Until now, our transformations have not produced proper HTML docu-
ments. Luckily, Internet Explorer isn’t very strict about this, so the
transformed XML could still be displayed. But it is good practice to

always adhere to the rules of the document type you are transforming

to. So let’s extend our stylesheet to make proper HTML.

An empty HTML file may look as follows:

<html>

<head>

<title>My title for this page</title>

</head>

<body>

</body>

</html>

Actual content will be placed between the <body> tags. A simple piece

of content may be:

<p>This is one line of <i>text</i>.</p>

The word “text” will be displayed in italics.

Extending our XSLT stylesheet could for example result in the follow-
ing:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/booklist/book">

 <html>

 <head>

 <title>My title for this page</title>

 </head>

 <body>

 <xsl:apply-templates select="author"/>

 An introduction to XML and XSLT

 19 9-8-2022

 <xsl:apply-templates select="title"/>

 </body>

 </html>

</xsl:template>

<xsl:template match="author">

 <p>

 <xsl:value-of select="."/>

 </p>

</xsl:template>

<xsl:template match="title">

 <p><i>

 <xsl:value-of select="."/>

 </i></p>

</xsl:template>

</xsl:stylesheet>

Note a couple of things:

• A template for the title node has been added.

• The XPaths to the author and title nodes are handled a little dif-

ferently here. The base match now takes place on /booklist/book.

• Instead of replacing author names by “anonymous”, we display
the value contained in the author node in the XML file, and the ac-

tual titles.

• We have added HTML tags in different places to make the output
proper HTML.

The result is as follows:

An introduction to XML and XSLT

9-8-2022 20

This illustrates the order in which the templates have been applied.

Per book-match, to all authors the author template is applied, then to

all titles the title template. And every author and title is placed on a

new line, because the HTML <p>-tags are in the author and title

templates.

1.2.4 Using CSS stylesheets

In HTML pages you have the option to refer to a CSS (Cascading Style
Sheet), although this is in no way a requirement. In a CSS you can
assign font types and character layout styles to HTML structural ele-
ments (like the body of the page or tables) and to so-called layout

classes which you specify yourself. The advantage of doing this in a

CSS instead of just hardcoded in the HTML itself (like in the example
above for the italic layout of the title), is that it is much more efficient
and faster to adjust the definition of a style once, than to re-apply the
adjusted style everywhere in the HTML. However, if you don’t need
reusable layout styles and you don’t mind applying all layout through

HTML tags, then you might as well leave CSS out of the equation alto-
gether.

An example of a simple CSS is the following. Save this file as
mystyle.css in the same folder.

BODY

{

 color: blue;

 background-color: lightyellow;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 font-size: 85%;

}

TABLE

{

 color: blue;

}

.title

{

 font-style: italic;

 text-decoration: underline;

}

Note a couple of things:

• title is a new class, BODY and TABLE are HTML structural ele-

ments. (The TABLE style will be used later on.)

• The several font types summed up behind font-family, indicate

the priority in which these are applied. If the computer of the user
doesn’t have the Verdana type installed, Arial will be used, etc.

 An introduction to XML and XSLT

 21 9-8-2022

• Instead of colour names, you can also use the hexadecimal RGB

(Red Green Blue) notation of colours, e.g. #DDDDDD (grey), or

#ffff99 (yellow).

In an HTML document you link to a CSS in the <head> section:

<link type="text/css" href="mystyle.css" rel="stylesheet"/>

So in our XSLT stylesheet, where we build up an HTML page, we can
do exactly the same, as can be seen in the further extended XML doc-
ument:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/booklist/book">

 <html>

 <head>

 <link type="text/css" href="mystyle.css" rel="stylesheet"/>

 <title>My title for this page</title>

 </head>

 <body>

 <xsl:apply-templates select="author"/>

 <xsl:apply-templates select="title"/>

 </body>

 </html>

</xsl:template>

<xsl:template match="author">

 <p>

 <xsl:value-of select="."/>

 </p>

</xsl:template>

<xsl:template match="title">

 <p>

 <div class="title">

 <xsl:value-of select="."/>

 </div>

 </p>

</xsl:template>

</xsl:stylesheet>

Instead of storing the CSS code in its own file, you can also choose to
include it in the XSLT stylesheet itself, in between HTML <style

type="text/css"> and </style> tags in the <head> section:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

An introduction to XML and XSLT

9-8-2022 22

 <xsl:template match="/booklist/book">

 <html>

 <head>

 <link type="text/css" href="mystyle.css" rel="stylesheet"/>

 <title>My title for this page</title>

 <style type="text/css">

 BODY

 {

 color: blue;

 background-color: lightyellow;

 font-family: Verdana, Arial, Helvetica, sans-serif;

 font-size: 85%;

 }

 TABLE

 {

 color: blue;

 }

 .title

 {

 font-style: italic;

 text-decoration: underline;

 }

 </style>

 </head>

 <body>

 <xsl:apply-templates select="author"/>

 <xsl:apply-templates select="title"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="author">

 <p>

 <xsl:value-of select="."/>

 </p>

 </xsl:template>

 <xsl:template match="title">

 <p>

 <div class="title">

 <xsl:value-of select="."/>

 </div>

 </p>

 </xsl:template>

</xsl:stylesheet>

Without the CSS styles, you can obtain a similar result by including
HTML layout tags and attributes in the XSLT templates, as follows:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 An introduction to XML and XSLT

 23 9-8-2022

 <xsl:template match="/booklist/book">

 <html>

 <head>

 <title>My title for this page</title>

 </head>

 <body bgcolor="lightyellow">

 <xsl:apply-templates select="author"/>

 <xsl:apply-templates select="title"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="author">

 <p>

 <xsl:value-of select="."/>

 </p>

 </xsl:template>

 <xsl:template match="title">

 <p>

 <u><i><xsl:value-of select="."/></i></u>

 </p>

 </xsl:template>

</xsl:stylesheet>

The result of either transformation now looks as follows:

An introduction to XML and XSLT

9-8-2022 24

1.2.5 Applying HTML tables

Now let’s try to put this in a nice table, using CSS. Again, we use
standard HTML tags to accomplish this. The template and the location
therein in which you place these tags matters of course. After all, do
you want a table around each author, around each book, or just one

for the entire booklist?

To get one table around all books, we have to change the first tem-
plate to match /booklist, add a template for a book, move the base

HTML to that new template, and call the book template within HTML

<table> tags from within the first template and call the author and

title templates within table cells and rows:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/booklist">

 <html>

 <head>

 <link type="text/css" href="mystyle.css" rel="stylesheet"/>

 <title>My title for this page</title>

 </head>

 <body>

 <table border="1">

 <xsl:apply-templates select="book"/>

 </table>

 </body>

 </html>

</xsl:template>

<xsl:template match="book">

 <tr>

 <td>

 <xsl:apply-templates select="author"/>

 </td>

 <td>

 <xsl:apply-templates select="title"/>

 </td>

 </tr>

</xsl:template>

<xsl:template match="author">

 <p>

 <xsl:value-of select="."/>

 </p>

</xsl:template>

<xsl:template match="title">

 <p>

 <div class="title">

 <xsl:value-of select="."/>

 An introduction to XML and XSLT

 25 9-8-2022

 </div>

 </p>

</xsl:template>

</xsl:stylesheet>

The result looks like this:

Note the empty cel in the right bottom corner, due to the lack of a title

for the author Jane Austen. The cell didn’t even get a border because
the title template wasn’t applied here.

1.2.6 Functions, variables and parameters in XPath

In XSLT you can use variables but you can assign a value to it only

once. So you cannot use incremental counters, or string variables

which you build up piece by piece. Nor are there normal loop construc-
tions. (The solution here is recursive programming: calling the current
template from within the template, with parameters, but that is be-
yond the scope of this documentation.)
Let’s extend the XSLT stylesheet we’ve been working on with some

basic functionality, to finish this introduction:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="/booklist">

 <html>

 <head>

 <link type="text/css" href="mystyle.css" rel="stylesheet"/>

 <title>My books list</title>

 </head>

 <body>

 <table border="1">

 <xsl:apply-templates select="book"/>

 </table>

 </body>

 </html>

</xsl:template>

An introduction to XML and XSLT

9-8-2022 26

<xsl:template match="book">

 <tr>

 <td><xsl:apply-templates select="author"/></td>

 <td><xsl:apply-templates select="title"/></td>

 <td><xsl:apply-templates select="publisher"/></td>

 </tr>

</xsl:template>

<xsl:template match="author | publisher">

 <p>

 <xsl:value-of select="name()"/>

 <xsl:variable name="name">

 <xsl:choose>

 <xsl:when test="contains(., ',')">

 <xsl:value-of select="substring-after(., ',')"/>

 <xsl:value-of select="substring-before(., ',')"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="."/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <xsl:call-template name="printTheName">

 <xsl:with-param name="nameParameter" select="$name"/>

 </xsl:call-template>

 </p>

</xsl:template>

<xsl:template name="printTheName">

 <xsl:param name="nameParameter"/>

 :

 <xsl:value-of select="$nameParameter"/>

</xsl:template>

<xsl:template match="title">

 <p>

 <div class="title">

 <xsl:value-of select="."/>

 </div>

 </p>

</xsl:template>

</xsl:stylesheet>

The result looks as follows:

 An introduction to XML and XSLT

 27 9-8-2022

The first thing we may notice is that the publisher is now displayed as

well. To this end we’ve changed the author template so that it applies

to publishers too. This is done in:

<xsl:template match="author | publisher">

And in the book template we of course have to apply the publisher

template as well:

<td><xsl:apply-templates select="publisher"/></td>

Then we may notice that there is “fixed” text displayed in front of au-

thors and publishers, namely “author :” and “publisher :”. “author”
and “publisher” are the names of the current XPath nodes, which you

include in the output via:

<xsl:value-of select="name()"/>

In the printTheName template the colon is added.

But the most important change is the reversal of surname and first
name. Within the <xsl:variable name="name"> node we switch sub-

strings. The output generated by the select statements is put in the

name variable automatically simply because this output is created

within the variable node.

In the choose node we have a sort of IF-THEN-ELSE, implemented here

as when and otherwise. <xsl:when test="contains(., ',')"> means if

the current XML node content contains a comma, then execute:

<xsl:value-of select="substring-after(., ',')"/>

<xsl:value-of select="substring-before(., ',')"/>

First the current content substring behind the comma is send to out-
put (the first name), then a space is inserted in the output (),

then the last name is extracted and placed behind the first name and
the single space. Note that functions are always put in the “value” part
of a select statement.

If the author name or publisher name contains no comma, then no
switch can be performed, so the otherwise part is executed: the en-

tire node content is send to output (here, to the name variable).

Then the printTheName template is called with a parameter. The pa-

rameter nameParameter is filled with the value from the name variable;

the $ in front of name retrieves the value.

In the printTheName template first the parameter is declared. Then, in

<xsl:value-of select="$nameParameter"/> the value from nameParame-

An introduction to XML and XSLT

9-8-2022 28

ter, which was assigned when this template was called, is send to

output (the HTML file, not the name variable).
Note that variables are local within a template, so the above illustrates
how to pass on the value from a variable to another template.

A simpler solution might have been to output the name variable from

the author | publisher template directly, without needing the

printTheName template at all:

:<xsl:value-of select="$name"/>

Further note that apply-templates is used to apply the named tem-

plate to all elements with this name in the XML file, while call-

template calls a template which has no matching XML node.

◼ Adlib and Axiell Collections parameters

When Adlib (adlwin.exe) generates XML for output or display which
will be formatted by an XSLT stylesheet, it passes a number of pa-
rameters (aka system variables) to the stylesheet. You can use these
parameters and the values contained in them to enhance the func-
tionality of your XSLT stylesheets. The available parameters are the
following: namely:

• ui_language – the current user interface language as referenced

in Adlib. For example, English is 0, while Dutch is 1. This
parameter can be used in output/export formats and in

presentation formats for web browser boxes.

• data_language – the currently selected data language as an IETF

language tag. Examples of these IETF language codes are: 'en-

GB', 'en-US', 'nl-NL', 'de-DE', 'fr-FR'. This parameter can be

used in output/export formats and in presentation formats for web
browser boxes.

• background_color – the background color of the screen as a

hexadecimal HTML colour code (#rrggbb). This parameter can
only be used in web browser boxes.

• retrievalPath - will contain the path or URL as set in the Adlib

Designer Retrieval path option of an image field in the data dic-
tionary. This parameter can be used in output/export formats and

in presentation formats for web browser boxes.

• thumbnailRetrievalPath - will contain the path or URL as set in

the Adlib Designer Thumbnail retrieval path option of an image
field in the data dictionary. This parameter can be used in
output/export formats and in presentation formats for web
browser boxes.

 An introduction to XML and XSLT

 29 9-8-2022

• baseURL - will contain the path to the current Adlib application

folder (the folder containing the adlib.pbk file). This parameter can
be used in output/export formats and in presentation formats for

web browser boxes.

• userName - the login name of the current Adlib user. This para-

meter can be used in output/export formats and in presentation
formats for web browser boxes.

• language – the IETF language tag of the current user interface

language of Microsoft Office, e.g. 'en-US' or 'nl-NL'. This param-

eter is generated by the Adlib Office Connect plugin and can only
be used in Adlib Office Connect presentation formats.

In Axiell Collections however, currently only four of these parameters
are available, one of them even implemented differently, namely:

• ui_language – the current user interface language as it is active

in Axiell Collections. Contrary to the adlwin implementation, here
the parameter contains a standard two-letter language code, like

en for English, nl for Dutch, fr for French, de for German etc.

This parameter can be used in output formats.

• data_language – the currently selected data language as an IETF

language tag. Examples of these IETF language codes are: 'en-

GB', 'en-US', 'nl-NL', 'de-DE', 'fr-FR'. This parameter can be

used in output formats.

• retrievalPath - will contain the path or URL as set in the Adlib

Designer Retrieval path option of an image field in the data dic-
tionary. This parameter can be used in output formats if the path
is a full URL. (So you need an image web server to allow printing
of images.)

• thumbnailRetrievalPath - will contain the path or URL as set in

the Adlib Designer Thumbnail retrieval path option of an image
field in the data dictionary. This parameter can be used in output
formats if the path is a full URL. (So you need an image web

server to allow printing of images.)

To use the parameters in a stylesheet, declare them as a regular XSLT
parameter without a default value (because it will be overwritten
anyway) somewhere in the file, for example:

<xsl:param name="data_language”></xsl:param>

<xsl:param name="ui_language"></xsl:param>

An introduction to XML and XSLT

9-8-2022 30

It’s up to you to choose which ones to use in your stylesheets. More

information about these parameters and examples of their application

can be found in chapters 2.2, 2.2.2 , 4.1.1 and 5.2.1 .

1.2.7 Getting an example of the generated Adlib XML

Whenever you’re about to create an XSLT stylesheet for Adlib or Col-

lections data you need to know what the generated XML looks like.
This is especially relevant since currently (December 2017), Adlib
grouped XML and unstructured XML are different from the grouped
and unstructured XML generated by Collections… In the following
chapters you’ll find an explanation of the different types of XML you
can expect and many examples, but if you’re still unsure and there’s

no obvious way to view the generated XML (like in Adloan), you may

create the following very small stylesheet to output the actual gener-
ated XML without transforming it to anything else, giving you a good
example to work with:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" ver-
sion="1.0">
 <xsl:template match="/">
 <textarea rows="70" cols="90">
 <xsl:copy-of select="/" />
 </textarea>
 </xsl:template>
</xsl:stylesheet>

or, using a different method, to output the generated XML within the
base <adlibXML> node, as part of an empty HTML document:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" ver-
sion="1.0">
 <xsl:output method="html" />
 <xsl:template match="/adlibXML">
 <html>
 <head>
 <title>Get Axiell Collections output XML</title>
 </head>
 <body>
 <xmp>
 <xsl:copy-of select ="*"/>
 </xmp>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

 An introduction to XML and XSLT

 31 9-8-2022

1.2.8 Best practice

You should always start by creating a template (match) for the XPath
root node, in the example above this is /booklist. This is your main
template from which you should select other templates when appro-
priate.

You could arrange all other templates by size, the smallest ones at the
bottom of the stylesheet, increasing in size towards the top. But a
grouping based on “procedural” templates versus non-procedural ones
would also make sense.
Template sizes should be kept as small as possible. Preferably, any
template should be able to fit on your screen entirely. You can achieve

this by optimizing any functionality.

For transformation to HTML, it is recommended to use a CSS to speci-
fy character layout styles like fonts and colours. This keeps you XSLT
stylesheet more clean, and changes in layout styles are easier to im-
plement in a CSS stylesheet anyway.

Comment your XSLT stylesheet as much as possible, with: <!-- my

comments --> Comments cannot be nested, so if you want to “com-

ment out” a large piece of code which already has comments in it, use
a when test="0" around it.

1.2.9 Other uses of XML and XSLT

Through a so-called gateway it’s possible to restructure queries made
in Adlib to fit the syntax of third-party database software. The gate-

way then accesses such a database over the internet, for instance via
HTTP or through SRU. When the search result comes back as XML, it
is probably not Adlib XML. However, by using XSLT stylesheets in the
gateway, it is possible to transform the foreign XML to Adlib XML,
which is then send back to the Adlib application where the data is
ready to be derived into the Adlib database. This way, foreign data-
bases can be accessed as if they were “friendly” Adlib databases.

1.2.10 More information

For more information about XPath, see a third-party manual or the
internet, for example: http://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath

 33 9-8-2022

2 Creating output formats

2.1 Grouped XML for XSLT export/output formats

When you have marked one or more records in Adlib, you can choose
to print them via a standard or custom output format (available via
the File > Output formats menu) or to export them to a standard or

custom export format (available as export types through the Export
wizard in Adlib). In Axiell Collections you can use the printer icon in
the top toolbar, to print either all records from the result set, all
marked records or just the currently selected record.

One way to create a custom output format or export format is to build
an appropriate XSLT stylesheet. Adlib, as well as Axiell Collections,

internally processes records as XML and when you execute an XSLT
export format or XSLT output format, this XML is passed on to the
stylesheet which converts the XML to the desired format: this target
format would need to be HTML if it concerns an output format, or any
desired format (XML, HTML, plain text, etc.) if it concerns an export
format.

Until Adlib 7.1, the source Adlib XML format passed on to XSLT style-

sheets for printing and exporting was of the unstructured type by de-
fault. Since this type has its drawbacks, Adlib 7.1 (and higher) is ca-
pable of passing on Adlib XML of the grouped type as well. Axiell Col-
lections can generate either unstructured XML or grouped XML, alt-
hough currently (December 2017) Adlib for Windows and Axiell Collec-
tions do not produce the same unstructured and grouped XML, unfor-
tunately, so you can’t create an XSLT output format that works in both

environments. Which XML type must be generated by Adlib or Collec-
tions, can be set per XSLT Output job or Export format via Adlib De-
signer 7.1 or higher.

2.1.1 Setting the XML type in Designer

Output jobs (aka output formats or print formats) as well as Export
formats (not to be confused with Export jobs which consist of the
properties of an actual export procedure that can be run from within
the Export job editor), are registered per data source (like the Internal
object catalogue for example) underneath an application definition
(like that of Adlib Museum 4.2) in the Application browser of Adlib

Designer.

Creating output formats

9-8-2022 34

The XML type for an output job can be set in the XML type option on
the Output job properties tab of a selected output job. See the De-
signer Help for more information about setting up output jobs.)

The XML type for an export format can be set in the XML type option

on the (inaptly named) Export job properties tab of a selected export
format. See the Designer Help for more information about setting up
export formats.)

http://documentation.axiell.com/alm/en/index.html?ds_appspropertiesoutputjobs.html
http://documentation.axiell.com/alm/en/index.html?ds_appspropertiesoutputjobs.html
http://documentation.axiell.com/alm/en/index.html?ds_appspropertiesexportformats.html

 Creating output formats

 35 9-8-2022

As mentioned, earlier created export formats and output formats al-
ways had to be based on unstructured XML. From Designer 7.1, un-
structured XML will always be assumed for pre-existing formats so you

won’t have to change anything to your existing export formats and
output formats, nor to your existing XSLT stylesheets. For new XSLT

export formats and output formats, the option will default to Grouped
though.

2.1.2 Advantages of grouped XML for use in stylesheets

The main advantage of the grouped type over the unstructured one is

that it becomes easier to process repeated occurrences of grouped
fields. In unstructured Adlib XML, all fields and field occurrences are
just listed in one long list inside the <record> node, whilst in grouped

Adlib XML, fields are grouped within a field group node (if a relevant
field group exists in the data dictionary) and that field group node is

repeated for each field group occurrence.
Whenever you create an XSLT stylesheet for unstructured Adlib XML,
which must be able to collect field data per field group occurrence, you

have no choice but to always count the “position” of every processed
field occurrence because that’s the only way to retrieve the other
fields from the same position. In grouped Adlib XML on the other
hand, there’s no need for such a workaround because every field
group occurrence is contained within its own field group node. Match-
ing an XSLT template to a field group node automatically provides

Creating output formats

9-8-2022 36

access to all grouped fields with the same occurrence number (in oth-

er words: at the same position).

2.1.3 Examples

Suppose you wish to create an output format based on an XSLT
stylesheet, to print the object name(s) and the notes pertaining to the
object name, of a museum object. The object_name and ob-

ject_name.notes fields, as specified in the data dictionary of the Col-

lect database, are part of a field group called Object_name. Because of

this grouping you can repeat these two fields (and the others belong-
ing to the group) as a group in the Adlib record. When you print these

group repetitions, you will want to keep them grouped of course: you

don’t want a list of all object names followed by a list of all notes.

For unstructured Adlib XML you would have to tackle this problem as
follows:

<?xml version="1.0" encoding="utf-8"?>

 <xsl:stylesheet xmlns:xsl=http://www.w3.org/1999/XSL/Transform

 version="1.0">

 <xsl:output method="html" />

 <xsl:template match="/adlibXML">

 <html>

 <head>

 <meta http-equiv="X-UA-Compatible" content="IE=edge" />

 <title>Field group handling for unstructured XML</title>

 </head>

 <body>

 <xsl:apply-templates select="recordList/record"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="record">

 <xsl:apply-templates select="object_name"/>

 </xsl:template>

 <xsl:template match="object_name">

 <xsl:variable name="pos" select="position()" />

 <p>

 <xsl:value-of select="."/>

 <xsl:apply-templates select="../object_name.notes[$pos]"/>

 </p>

 </xsl:template>

 <xsl:template match="object_name.notes">

 <xsl:value-of select="."/>

 </xsl:template>

 </xsl:stylesheet>

http://www.w3.org/1999/XSL/Transform

 Creating output formats

 37 9-8-2022

For grouped Adlib XML on the other hand, you could code this as

shown below:

<?xml version="1.0" encoding="utf-8"?>

 <xsl:stylesheet xmlns:xsl=http://www.w3.org/1999/XSL/Transform

 version="1.0">

 <xsl:output method="html" />

 <xsl:template match="/adlibXML">

 <html>

 <head>

 <meta http-equiv="X-UA-Compatible" content="IE=edge" />

 <title>Field group handling for grouped XML</title>

 </head>

 <body>

 <xsl:apply-templates select="recordList/record"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="record">

 <xsl:apply-templates select="Object_name"/>

 </xsl:template>

 <xsl:template match="Object_name">

 <p>

 <xsl:apply-templates select="object_name"/>

 <xsl:apply-templates select="object_name.notes"/>

 </p>

 </xsl:template>

 <xsl:template match="object_name">

 <xsl:value-of select="term"/>

 </xsl:template>

 <xsl:template match="object_name.notes">

 <xsl:value-of select="."/>

 </xsl:template>

 </xsl:stylesheet>

The output of either stylesheet is structured like this:

object name in field group occurrence 1 of record 1
object name notes in field group occurrence 1 of record 1

object name in field group occurrence 2 of record 1
object name notes in field group occurrence 2 of record 1

object name in field group occurrence 3 of record 1

object name notes in field group occurrence 3 of record 1

http://www.w3.org/1999/XSL/Transform

Creating output formats

9-8-2022 38

object name in field group occurrence 1 of record 2

object name notes in field group occurrence 1 of record 2

object name in field group occurrence 2 of record 2
object name notes in field group occurrence 2 of record 2

…

2.2 Printing images via an XSLT stylesheet

The image reference (aka reproduction reference) in your Adlib rec-
ords does usually not consist of a full path to an image file. In 3.4
applications for example, it is a relative path by default, like

..\images\BM0034.jpg (relative to the application folder). In 4.2 appli-
cations on the other hand, by default a storage/retrieval path has
been set for the image field, so that only the image file name is pre-
sent in the image reference field. Since the HTML output we would like
to generate requires a URL to retrieve an image, we need to find a
way to combine the image file name from the image reference field

with the URL to the images folder (a file system path won’t do). A
wwwopac.ashx call to an image server, as is often used as stor-
age/retrieval path for image fields in modern Adlib applications and
Axiell Collections is exactly what we need. To get this base URL in
your stylesheet, Adlib (adlwin.exe-based) applications offer more au-
tomation than Axiell Collections currently does, so if you’re creating a

stylesheet which must function in both enviroments you’ll have to use

the base method, which is to hard code the base URL in your
stylesheet and concatenate it with the image file name, like in the
following example (for grouped XML):

<xsl:template match="Reproduction">
 <xsl:variable name="imageFileName">
 <xsl:value-of select="reproduction.reference"/>
 </xsl:variable>
 <xsl:variable name="imagePath">
 <xsl:text>http://ourserver.com/images/wwwopac.ashx?
command=getcontent&server=images&value=</xsl:text>
 <xsl:value-of select="$imageFileName"/>
 </xsl:variable>
 <p>

 </p>
</xsl:template>

As you can see, this template matches the Reproduction field group.

It fills a new imageFileName variable with the (first) linked image file

name from the reproduction.reference field. Next, another new

variable named imagePath is created and filled with the base URL to

our image server after which the image file name is pasted behind it.

 Creating output formats

 39 9-8-2022

And finally the contents of the imagePath variable is used as the src

attribute of the HTML img tag (to retrieve the image in the resulting

HTML page).

For an enterprise solution, in which images for the different branches
are stored in their own folders, you can still use a single image server:

with the <folderMappingsList> settings (introduced in October 2016)

in adlibweb.xml, you can specify these different folders. In such case
you need to extend your wwwopac.ashx call with the folderId pa-

rameter which must be assigned the record number of the currently
processed, linked media record. The above example can then be
adapted to the following:

<xsl:template match="Reproduction">
 <xsl:variable name="imageFileName">
 <xsl:value-of select="reproduction.reference"/>
 </xsl:variable>
 <xsl:variable name="imageRecordLref">
 <xsl:value-of select="reproduction.reference.lref"/>
 </xsl:variable>
 <xsl:variable name="imagePath">
 <xsl:text>http://ourserver.com/images/wwwopac.ashx?
command=getcontent&server=images&value=</xsl:text>
 <xsl:value-of select="$imageFileName"/>
 <xsl:text>&folderId=</xsl:text>
 <xsl:value-of select="$imageRecordLref"/>
 </xsl:variable>
 <p>

 </p>
</xsl:template>

However, if you’re creating an XSLT output format just for use with
Adlib applications, you may not have to hard code the base URL in
your stylesheet. Prior to Adlib 7.1, when you had to create an XSLT

stylesheet to print images referenced this way in Adlib records, you
had to hard-code the path or URL to your images folder in your
stylesheet and combine it with the image reference from records, to
be able to provide the HTML output with full paths to image files. From

Adlib 7.1 though, you’ll no longer have to hard-code a path to the
images folder into your XSLT stylesheets. Instead, three new Adlib

parameters (system variables) are available for use in XSLT
stylesheets: retrievalPath, thumbnailRetrievalPath and baseUrl.

When you print selected records from Adlib using an XSLT output for-
mat, Adlib will pass the relevant path in the appropriate parameters to
the stylesheet:

• retrievalPath: will contain the path or URL as set in the Adlib

Designer Retrieval path option of an image field in the data dic-
tionary. (See the Designer Help for more information about this

http://api.adlibsoft.com/site/documentation/the-adlibweb-xml-file
http://documentation.axiell.com/alm/en/index.html?ds_dbfieldspropertiesimageproperties.html#retrievalpath

Creating output formats

9-8-2022 40

option.) If the option has not been set, the path set in the Storage

path option above it will be used instead. If neither has been set,

as is often the case in 3.4 applications and older, the parameter
will be empty.

• thumbnailRetrievalPath: will contain the path or URL as set in

the Adlib Designer Thumbnail retrieval path option of an image
field in the data dictionary. If the option has not been set, the pa-
rameter will be empty.

• baseURL: will contain the path to the current Adlib application

folder (the folder containing the adlib.pbk file).

It’s up to you to choose which ones to use in your stylesheets. Style-

sheets for 3.4 applications or older will usually only require the ba-

seURL parameter, while newer applications require as least the re-

trievalPath and possibly the baseURL.

If you don’t want users to be able to print your high resolution images
and you have thumbnail images available in a separate folder set up in

the Adlib Designer Thumbnail retrieval path option of an image field in
the data dictionary, then you may use the thumbnailRetrievalPath

parameter instead of the retrievalPath parameter.

2.2.1 Example Adlib output formats

Below you can see two examples of complete XSLT stylesheets (made

for unstructured XML) for printing some object record data plus a

linked image from within Adlib. (You can also download them here.)
From each record, the object number, the title, the creator(s) (maxi-
mally two) and the object name(s) (maximally three) and only the
first linked image will be printed. Exactly five records should fit on a
single A4 page: images will be scaled to a fixed height.

First a code example for a 4.2 model application in which the Storage
path option for the reproduction.reference image field (tag FN in Col-

lect) has been set to a relative path (like ../images/%data%):

<?xml version="1.0" encoding="utf-8"?>

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:param name="retrievalPath"/>

 <xsl:param name="baseUrl"/>

 <xsl:output method="html" />

 <xsl:template match="/adlibXML">

 <html>

 <head>

 <meta http-equiv="X-UA-Compatible" content="IE=edge" />

 <title>List of objects</title>

 <style type="text/css">

 .text

 {

http://www.adlibsoft.com/download/Adlib%20XSLT%20Print%20Images%20Table%20Examples.zip

 Creating output formats

 41 9-8-2022

 font-family: Verdana;

 font-size: x-small;

 }

 .table

 {

 border: solid 1px black;

 border-collapse: collapse;

 }

 </style>

 </head>

 <body>

 <xsl:apply-templates select="recordList/record"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="record">

 <table width="700px" border="1" cellspacing="0"

 cellpadding="5" class="table">

 <tr valign="top" border="0">

 <td align="right" width="350">

 <xsl:apply-templates select="reproduction.reference[1]"/>

 </td>

 <td valign="top" class="text">

 <p>

 Object number:

 <xsl:apply-templates select="object_number"/>

 Title:

 <xsl:apply-templates select="title"/>

 <table cellspacing="0" cellpadding="0">

 <tr valign="top">

 <td width="100" class="text">Creator:</td>

 <td class="text">

 <xsl:apply-templates select="creator"/>

 </td>

 </tr>

 <tr valign="top">

 <td width="100" class="text">Object name:</td>

 <td class="text">

 <xsl:apply-templates select="object_name"/>

 </td>

 </tr>

 </table>

 </p>

 </td>

 </tr>

 </table>

 <xsl:if test="position() mod 5 = 0">

 <p style="page-break-before:always" />

Creating output formats

9-8-2022 42

 </xsl:if>

 </xsl:template>

 <xsl:template match="title">

 <i>

 <xsl:value-of select="."/>

 </i>

 </xsl:template>

 <xsl:template match="object_name">

 <xsl:if test="position() < 4">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:template>

 <xsl:template match="creator">

 <xsl:if test="position() < 3">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:template>

 <xsl:template match="object_number">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="reproduction.reference">

 <xsl:variable name="imagePath">

 <xsl:call-template name="replace-string">

 <xsl:with-param name="text" select="$retrievalPath"/>

 <xsl:with-param name="replace" select="'%data%'"/>

 <xsl:with-param name="with" select="."/>

 </xsl:call-template>

 </xsl:variable>

 <p>

 </p>

 <p>

 </p>

 </xsl:template>

 <xsl:template name="replace-string">

 <xsl:param name="text"/>

 <xsl:param name="replace"/>

 <xsl:param name="with"/>

 <xsl:choose>

 <xsl:when test="contains($text,$replace)">

 <xsl:value-of select="substring-before($text,$replace)"/>

 <xsl:value-of select="$with"/>

 <xsl:call-template name="replace-string">

 Creating output formats

 43 9-8-2022

 <xsl:with-param name="text"

 select="substring-after($text,$replace)"/>

 <xsl:with-param name="replace" select="$replace"/>

 <xsl:with-param name="with" select="$with"/>

 </xsl:call-template>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$text"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 </xsl:stylesheet>

Creating output formats

9-8-2022 44

The result of printing to this stylesheet (or the following) will look

something like this:

 Creating output formats

 45 9-8-2022

Some comments about the code:

• Note the declaration of the Adlib parameters retrievalPath and

baseURL at the top. You’ll have to add these declarations to your

stylesheets yourself.

• The <style> node specifies two CSS styles, one for the text to be

printed and one for the some properties of the border of each ta-

ble in which a record is to be printed.
Note that if you choose to set a background colour for the table or
one of its cells, it won’t be printed by default, because of a default
page setting for not printing background colours, in Internet Ex-
plorer.

• A record will be printed in a table within a table. The outer one has
one row of two cells. The right cell will contain the object number,

the title and another two by two table. The first column of the in-
ner table will hold the labels for Creator: and Object name: whilst
the second will contain possible multiple occurrences of these
fields. The left cell of the main table will contain the image itself.

• To control the space occupied on the page by each printed record,
the height of the image is fixed to 180 pixels: it will be scaled au-

tomatically while maintaining the aspect ratio. If too much text
would be printed - this can happen if you add fields – the height of
a single table will expand and five records will no longer fit on a

page, breaking up your printout. To apply to most cases, this ex-
ample stylesheet limits the text by allowing maximally two creator
names and three object names to be printed: see the <xsl:if

test… nodes in the object_name and creator templates. Of linked

images only the first one will be printed, which is achieved by call-
ing the reproduction.reference template only for the first oc-

currence (indicated by the [1] behind it).

• The page break is forced at the end of the record template, after

every five records. The test "position() mod 5 = 0" divides the

sequential number of the record in the selection by 5 and becomes

true if zero remains behind the decimal. (If you were to replace 5

by 4 for example, the test becomes true after every 4 records.)

The page break will then be forced by the CSS style "page-break-

before:always" which is assigned to the HTML <p> tag in this

case. (Note that you can’t use this style within tables.)

• The reproduction.reference template, in combination with the

replace-string template, handles the image printing. The re-

place-string template first replaces the %data% string in the re-

trieval path with the actual image reference from the record. As-

Creating output formats

9-8-2022 46

suming the retrieval path is a relative path, the resulting path is

passed to the imagePath variable in the reproduction.reference

template. Then an HTML img element is created in which the im-

age is assigned its maximum height and its source path consisting
of the baseURL concatenated with the imagePath. Note that add-

ing a relative path like ..\images\img45.jpg to a base path like

C:\Adlib\Museum is perfectly well allowed. This would automatical-
ly form the following path: C:\Adlib\images\img45.jpg.
If your retrieval or storage path is a full URL or UNC path, you
must not add the baseURL to it: then the imagePath is all you

need.

Next an example for a 3.4 model application (again for unstructured

XML, with identical resulting output) in which no Storage path or Re-
trieval path has been set and records contain a relative path to an

image (like ../images/img2349.jpg) in the reproduction.identifier_URL
image field (tag B1 in Collect). (The direction of the slashes in the
image reference doesn’t matter.)
The only difference here is how the full path to the image file is put
together. We actually just need to add the image reference from the
record to the baseUrl, and that’s it (see the reproduction.identi-

fier_URL template).

<?xml version="1.0" encoding="utf-8"?>

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:param name="baseUrl"/>

 <xsl:output method="html" />

 <xsl:template match="/adlibXML">

 <html>

 <head>

 <meta http-equiv="X-UA-Compatible" content="IE=edge" />

 <title>List of objects</title>

 <style type="text/css">

 .text

 {

 font-family: Verdana;

 font-size: x-small;

 }

 .table

 {

 border: solid 1px black;

 border-collapse: collapse;

 }

 </style>

 </head>

 <body>

 <xsl:apply-templates select="recordList/record"/>

 </body>

 </html>

 Creating output formats

 47 9-8-2022

 </xsl:template>

 <xsl:template match="record">

 <table width="700px" border="1" cellspacing="0"

 cellpadding="5" class="table">

 <tr valign="top" border="0">

 <td align="right" width="350">

 <xsl:apply-templates

 select="reproduction.identifier_URL[1]"/>

 </td>

 <td valign="top" class="text">

 <p>

 Object number:

 <xsl:apply-templates select="object_number"/>

 Title:

 <xsl:apply-templates select="title"/>

 <table cellspacing="0" cellpadding="0">

 <tr valign="top">

 <td width="100" class="text">Creator:</td>

 <td class="text">

 <xsl:apply-templates select="creator"/>

 </td>

 </tr>

 <tr valign="top">

 <td width="100" class="text">Object name:</td>

 <td class="text">

 <xsl:apply-templates select="object_name"/>

 </td>

 </tr>

 </table>

 </p>

 </td>

 </tr>

 </table>

 <xsl:if test="position() mod 5 = 0">

 <p style="page-break-before:always" />

 </xsl:if>

 </xsl:template>

 <xsl:template match="title">

 <i>

 <xsl:value-of select="."/>

 </i>

 </xsl:template>

 <xsl:template match="object_name">

 <xsl:if test="position() < 4">

 <xsl:value-of select="."/>

 </xsl:if>

Creating output formats

9-8-2022 48

 </xsl:template>

 <xsl:template match="creator">

 <xsl:if test="position() < 3">

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:template>

 <xsl:template match="object_number">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="reproduction.identifier_URL">

 <p>

 </p>

 <p>

 </p>

 </xsl:template>

 </xsl:stylesheet>

2.2.2 Example Axiell Collections output format

Below you can see an example of a complete XSLT stylesheet (made

for grouped XML) for printing some object record data plus a linked
image from within Axiell Collections.

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

 <xsl:output method="html" />

 <xsl:param name="data_language"/>

 <xsl:template match="/adlibXML">

 <html>

 <head>

 <meta http-equiv="X-UA-Compatible" content="IE=edge" />

 <title>Object report</title>

 <style type="text/css">

 .text

 {

 font-family: Verdana;

 font-size: x-small;

 vertical-align: top;

 }

 .longtext

 {

 font-family: Verdana;

 font-size: x-small;

 vertical-align: top;

 white-space: pre-wrap;

 }

 .titletext

 {

 Creating output formats

 49 9-8-2022

 font-family: Verdana;

 font-weight: bold;

 font-size: large;

 }

 .headertext

 {

 font-family: Verdana;

 font-weight: bold;

 font-size: x-small;

 }

 .outertable

 {

 border: solid 1px black;

 border-collapse: collapse;

 }

 .innertable

 {

 border: solid 0px;

 border-collapse: collapse;

 }

 </style>

 </head>

 <body>

 <p class="titletext">

 Object report

 </p>

 <xsl:apply-templates select="recordList/record"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="record">

 <table width="700px" border="1" cellspacing="0" cellpadding="5"

 class="outertable">

 <tr valign="top" border="0">

 <td align="right" width="350">

 <xsl:apply-templates select="Reproduction[1]"/>

 </td>

 <td valign="top" class="text">

 <p class="headertext">

 Identification

 </p>

 <table width="340px" border="0" cellspacing="0"

 cellpadding="0" class="innertable">

 <tr valign="top">

 <td width="100" class="text">Object number:</td>

 <td class="text">

 <xsl:apply-templates select="object_number"/>

 </td>

 </tr>

 <tr valign="top">

 <td width="100" class="text">Title:</td>

 <td class="text">

Creating output formats

9-8-2022 50

 <xsl:apply-templates select="Title/title/value

 [@lang=$data_language]|Title/title/value

 [@lang='']"/>

 </td>

 </tr>

 <tr valign="top">

 <td width="100" class="text">Object category:</td>

 <td class="text">

 <xsl:apply-templates select="object_category/value

 [@lang=$data_language]|object_category/value

 [@lang='']"/>

 </td>

 </tr>

 <tr valign="top">

 <td width="100" class="text">Object name:</td>

 <td class="text">

 <xsl:apply-templates select="Object_name/object_name/

 value[@lang=$data_language]|Object_name/object_name/

 value[@lang='']"/>

 </td>

 </tr>

 </table>

 <p class="headertext">

 Production

 </p>

 <table width="340px" border="0" cellspacing="0"

 cellpadding="0" class="innertable">

 <tr>

 <td width="100" class="text">Creator:</td>

 <td class="text">

 <xsl:apply-templates select="Production/creator/value

 [@lang=$data_language]|Production/creator/

 value[@lang='']"/>

 </td>

 </tr>

 <tr>

 <td width="100" class="text">Dating:</td>

 <td class="text">

 <xsl:apply-templates select="Production_date"/>

 </td>

 </tr>

 <tr>

 <td width="100" class="text">Production place:</td>

 <td class="text">

 <xsl:apply-templates select="Production/

 production.place/value[@lang=$data_language]|

 Production/production.place/value[@lang='']"/>

 </td>

 </tr>

 <tr>

 <td width="100" class="text">Production notes:</td>

 <td class="text">

 <xsl:apply-templates select="Production/

 production.notes"/>

 Creating output formats

 51 9-8-2022

 </td>

 </tr>

 </table>

 <p class="headertext">

 Object history

 </p>

 <table width="340px" border="0" cellspacing="0"

 cellpadding="0" class="innertable">

 <tr>

 <td class="text">

 <xsl:apply-templates select="object_history_note"/>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 </table>

 <p class="headertext">

 <text>Description</text>

 </p>

 <p class="longtext">

 <xsl:apply-templates select="Description/description"/>

 </p>

 <table width="700px" border="1" cellspacing="0" cellpadding="5"

 class="outertable">

 <tr valign="top" border="0">

 <td align="left" width="350">

 <table width="340px" border="0" cellspacing="0"

 cellpadding="0" class="innertable">

 <tr valign="top">

 <td width="100" class="text">Accession date:</td>

 <td class="text">

 <xsl:apply-templates select="acquisition.date"/>

 </td>

 </tr>

 <tr valign="top">

 <td width="100" class="text">Accession method:</td>

 <td class="text">

 <xsl:apply-templates select="acquisition.method/

 value[@lang=$data_language]|

 acquisition.method/value[@lang='']"/>

 </td>

 </tr>

 </table>

 </td>

 <td valign="top" class="text">

 <table width="340px" border="0" cellspacing="0"

 cellpadding="0" class="innertable">

 <tr valign="top">

 <td width="100" class="text">Institution:</td>

 <td class="text">

Creating output formats

9-8-2022 52

 <xsl:apply-templates select="institution.name/

 value[@lang=$data_language]|

 institution.name/value[@lang='']"/>

 </td>

 </tr>

 <tr valign="top">

 <td width="100" class="text">Collection:</td>

 <td class="text">

 <xsl:apply-templates select="collection/value

 [@lang=$data_language]|collection/value[@lang='']"/>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 </table>

 <xsl:if test="position() mod 1 = 0">

 <p style="page-break-before:always" />

 </xsl:if>

 </xsl:template>

 <xsl:template match="object_number">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="Title/title/value">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="object_category/value">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="Object_name/object_name/value">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="Production/creator/value">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="Production_date">

 <xsl:value-of select="production.date.start"/>

 <text> - </text>

 <xsl:value-of select="production.date.end"/>

 </xsl:template>

 <xsl:template match="Production/production.place/value">

 <xsl:value-of select="."/>

 Creating output formats

 53 9-8-2022

 </xsl:template>

 <xsl:template match="Production/production.notes">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="object_history_note">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="Description/description">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="acquisition.date">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="acquisition.method/value">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="institution.name/value">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="collection/value">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="Reproduction">

 <xsl:variable name="imageFileName">

 <xsl:value-of select="reproduction.reference"/>

 </xsl:variable>

 <xsl:variable name="imagePath">

 <xsl:text>http://ourserver.com/images/wwwopac.ashx?

command=getcontent&server=images&value=</xsl:text>

 <xsl:value-of select="$imageFileName"/>

 </xsl:variable>

 <p>

 </p>

 <p>

 </p>

 </xsl:template>

</xsl:stylesheet>

Creating output formats

9-8-2022 54

2.3 Accessing the current user name in XSLT

Sometimes you may want to include the name of the current user in
your XSLT output, the person who starts the printing or exporting.
Therefor a parameter has been added to Adlib 7.1 (not available in
Axiell Collections), which you can use in your XSLT stylesheets:
userName. When an XSLT stylesheet is called from within Adlib,

userName will automatically contain the (login) name of the current

user. By declaring the parameter explicitly in the stylesheet, you can
access it in the rest of the code, for example to print it somewhere. An

example of a rather rudimentary stylesheet which only prints the user
name, is the following:

<?xml version="1.0" encoding="utf-8"?>

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:param name="userName"/>

 <xsl:output method="html" />

 <xsl:template match="/adlibXML">

 <html>

 <head>

 <title>Current user</title>

 </head>

 <body>

 <p>

 <xsl:value-of select="$userName"/>

 </p>

 </body>

 </html>

 </xsl:template>

 </xsl:stylesheet>

2.4 Printing barcode labels to a normal printer

This chapter offers two examples of XSLT stylesheets to print barcode
labels to a normal printer, the first (made for unstructured XML) prints

barcode labels containing object images from within Adlib for Win-

dows, while the second (made for grouped XML) prints simple barcode
labels to a normal printer from within Axiell Collections. You can print
to paper or label sheets. The examples are really just that, very basic
examples to show you how you can build such stylesheets yourself.

◼ Stylesheet for unstructured XML, to print from within Adlib

<?xml version='1.0' ?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

 <xsl:output method="html" />

 <!-- 4,5cm is 127 points -->

 Creating output formats

 55 9-8-2022

 <!-- === -->

 <xsl:template match="/">

 <html>

 <style>

 div

 {

 font-family:Arial;

 }

 span.barcode

 {

 font-size:14pt;

 font-family:BC39;

 }

 div.top-row

 {

 width:269pt;

 padding-bottom:10pt;

 }

 div.bc-column

 {

 float:right;

 text-align:right;

 }

 div.transit-logo

 {

 vertical-align:bottom;

 padding-top:13pt;

 }

 div.img-column

 {

 float:left;

 }

 div.img-column img

 {

 height:122pt;

 }

 div.lbl-row

 {

 width:269pt;

 border-style:solid;

 border-width:1px;

 padding:5px;

 margin-bottom:10pt;

 }

 </style>

 <body>

 <xsl:apply-templates select="adlibXML" />

 </body>

 </html>

 </xsl:template>

 <!-- === -->

 <xsl:template match="adlibXML">

 <xsl:apply-templates select="recordList/record" />

 </xsl:template>

 <!-- === -->

Creating output formats

9-8-2022 56

 <xsl:template match="record">

 <div class="top-row">

 <div class="img-column">

 <xsl:apply-templates select="reproduction.reference[1]"/>

 </div>

 <div class="bc-column">

 <div>

 <xsl:apply-templates select="object_number"

 mode ="barcode"/>

 </div>

 <div class="transit-logo">

 <xsl:call-template name ="transit-logo"/>

 </div>

 </div>

 </div>

 <div style="clear:all"/>

 <div class="lbl-row">

 <xsl:apply-templates select="object_number" mode ="text"/>

 <xsl:apply-templates select="object_name"/>

 <!-- = the content of the object_name node will simply = -->

 <!-- = be included in the output, since we define no = -->

 <!-- = object_name template in this stylesheet. The = -->

 <!-- = same applies to the title and current_location. = -->

 <xsl:apply-templates select="title"/>

 <xsl:apply-templates select="current_location"/>

 </div>

 </xsl:template>

 <xsl:template match ="reproduction.reference">

 <xsl:attribute name="src">

 <!--fill in URL Image Handler or full (UNC) Path-->

 <xsl:text>C:\Adlib\Model 4.2\images\</xsl:text>

 <xsl:value-of select="." />

 </xsl:attribute>

 </xsl:template>

 <xsl:template match ="object_number" mode ="barcode">

 <!-- Barcode 39 needs a start and stop character * -->

 <xsl:text>*</xsl:text>

 <xsl:value-of select ="."/>

 <xsl:text>*</xsl:text>

 </xsl:template>

 <xsl:template match ="object_number" mode ="text">

 <xsl:value-of select ="."/>

 </xsl:template>

 <xsl:template name ="transit-logo">

 Creating output formats

 57 9-8-2022

 <xsl:choose>

 <xsl:when test="starts-with(object_name,'m')">

 <img src="C:\Adlib\Model 4.2\xslt\vrachtwagen.png"

 width="51pt"/>

 </xsl:when>

 <xsl:when test="starts-with(object_name,'r')">

 <img src="C:\Adlib\Model 4.2\xslt\vrachtwagen2.png"

 width="51pt"/>

 </xsl:when>

 <xsl:otherwise >

 <img src="C:\Adlib\Model 4.2\xslt\vrachtwagen3.png"

 width="51pt"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <!-- == -->

</xsl:stylesheet>

You can change it all you like of course, and to get it working in your
Adlib system you do indeed have to make some changes to it.

Proceed as follows:

1. You have to have a barcode font (a Code 39 font for example)
installed on the computer from which you want to print. If you

haven't got one, you'll have buy such a font first, find a freely
available font on the internet or try to install a demo version of a
suitable font. (Without a barcode font, the object number itself will

be printed on the label instead.) After installing the font, you can
find it in the Fonts section of your Control panel. Right-click it and
choose Properties to find its Title: this is the name to reference

the font by later on.

2. Save the XSLT code in a file and move it into an \xslt subfolder in
your application. Create the folder if it doesn't exist yet and put it
on the same level as the other Adlib subfolders (like \adapls, \data
and such).

3. Open the XSLT file in a simple text editor and adjust the fixed
paths to the \images folder and the \xslt folder to match your en-

vironment. Also change the name of the referred barcode font
(currently BC39) to the title you found in step 1. You can also

change the conditions to print the three different "vracht-
wagen#.png" icons to something else: currently these conditions
are rather silly, because they check the first letter of the object
name to select an icon. You should also change the icons them-
selves (to some sensible images that you actually have), come up
with different conditions, etc. Feel free to experiment with the

stylesheet.

Creating output formats

9-8-2022 58

4. Setup the XSLT stylesheet as an output format for the Internal

object catalogue. See the Designer Help for instructions on how to
do this.

5. Open your Museum application and mark some object records

containing images: more or less square or vertically oriented im-
ages work best in this example, as are relatively short object
numbers so that the barcode fits on a single line.

6. In the Adlib File menu, select your Output format to print to it.

http://documentation.axiell.com/alm/en/index.html?ds_appspropertiesoutputjobs.html

 Creating output formats

 59 9-8-2022

◼ Stylesheet for grouped XML, to print from within Collections

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

 <xsl:output method="html" />

 <xsl:template match="/adlibXML">

 <html>

 <head>

 <title>Object number barcode</title>

 <style type="text/css">

 .text

 {

 font-family: Verdana;

 font-size: large;

 vertical-align: top;

 }

 .titletext

 {

 font-family: Verdana;

 font-weight: bold;

 font-size: large;

 }

 .innertable

 {

 border: solid 0px;

 border-collapse: collapse;

 }

 @font-face {

 font-family: "MyBarcode";

 src: url(https://ourserver.com/free3of9.woff);

 }

 span.barcode

 {

 font-size:48pt;

 font-family: "MyBarcode"

 }

 </style>

 </head>

 <body>

 <xsl:apply-templates select="recordList/record"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="record">

 <table width="500px" border="0" cellspacing="0" cellpadding="5"

 class="innertable">

 <tr valign="top">

 <td align="center" class="text">

 <xsl:apply-templates select="object_number" mode ="barcode"/>

 </td>

 </tr>

 <tr valign="top">

 <td align="center" class="text">

Creating output formats

9-8-2022 60

 <xsl:apply-templates select="object_number" mode ="text"/>

 <p>________________________</p>

 </td>

 </tr>

 </table>

 </xsl:template>

 <xsl:template match ="object_number" mode ="barcode">

 <!-- Barcode 39 needs a start and stop character * -->

 <xsl:text>*</xsl:text>

 <xsl:value-of select ="."/>

 <xsl:text>*</xsl:text>

 </xsl:template>

 <xsl:template match ="object_number" mode ="text">

 <xsl:value-of select ="."/>

 </xsl:template>

</xsl:stylesheet>

You can change it all you like of course, and to get it working in Axiell
Collections you do indeed have to make some changes to it.

Proceed as follows:

1. You have to have a barcode font in the .woff format available on a

web server (accessible to users of Axiell Collections via a URL), on
the same domain as Collections. If you haven't got a barcode font,

you'll have purchase such a font first, find a freely available font
on the internet or try to install a demo version of a suitable font.
TrueType fonts don’t work but can be converted to a .woff type
font: there are (free) services on the web that can do this for you.
You refer to this font in the CSS section of the stylesheet:

@font-face {

font-family: "MyBarcode";

src: url(https://ourserver.com/free3of9.woff);

}

Replace the URL by your own URL.

A limitation of this implementation is that the HTML won’t be port-
able as far as the barcode is concerned. When printing with this
stylesheet, HTML will be generated. Often you will print this HTML
directly and the barcode will be printed too, but if you ever copy
the HTML itself to save it in a file or send it by e-mail you’ll notice
that it can’t show the barcode when that HTML is opened again,

outside of the Collections session.

 Creating output formats

 61 9-8-2022

2. Save the XSLT code in a file and move it into an \xslt subfolder in

your application. Create the folder if it doesn't exist yet and put it

on the same level as the other Adlib subfolders (like \adapls, \data
and such).

3. Setup the XSLT stylesheet as an output format for the Internal
object catalogue. See the Designer Help for instructions on how to
do this.

4. Open Axiell Collections and mark some object records.

5. Click the Create a report with a predefined output format icon in
the top toolbar and select your output format to generate the
HTML output.

2.5 Creating text labels from HTML fields

An HTML field is a database field meant for long, laid-out text, possibly
including images, much like a small and simple web page. Layout can
be applied to the text during editing of the record. You could use such

a field to create printable text labels to be presented with your muse-
um objects, for example. From within Adlib you can print the contents
of such a field to a Word template or with the aid of a custom XSLT
stylesheet, whilst keeping the layout intact. Although normally you will
only see the laid-out text while you are editing an HTML field, the field

contents will actually be stored as (editable) HTML code in the back-
ground. From Adlib 6.6.0 you can implement HTML fields in your ap-

plication.

For example: a good spot to implement such a field is the field for
label text on the Accompanying texts tab of a museum object record
(4.2 model application), since it would be nice if you could apply lay-
out to a label text during data entry, and maintain that layout in
printouts.
You can execute the following procedure in your own application, even

if the field to be converted already contains data: your data won’t get
lost:

1. Create a backup of your database(s) and applications before you
make any changes, just to be safe.

2. Open the Collect database in the Application browser in Designer,
and select the label.text field (tag AB).

If this field is not present in your application, you can of course
pick another description-like field of the Text data type to convert,
or create a new field.

3. Open the Data type drop-down list on the Field properties tab
(which has Text currently selected) and choose the HTML option.

http://documentation.axiell.com/alm/en/index.html?ds_appspropertiesoutputjobs.html

Creating output formats

9-8-2022 62

4. Save the change: right-click the Collect database and select Save

in the pop-up menu.

5. In the Screen editor, open the labels.fmt screen (Accompanying
texts), or another screen on which you want to place the new
HTML field.

6. Drag the lower border of the Labels box a few centimetres down-
wards so that some space is created for the new field. In the
menu choose Insert > HTML field.

7. Drag the HTML field into the box to the desired location and make
it as big as you like. This type of field will not automatically resize
as the user types more text in it, but a scroll bar will appear in-
stead. So if there is enough room on the screen, like in this exam-
ple, then make the HTML field tall enough to allow long text to be
visible in its entirety, in most cases. If desired, you can insert a

label in front of the HTML field, into which you copy label texts
from the already existing Text field label.

8. Now select the old AB field and choose Edit > Delete in the menu.

Label and field will be removed and the fields underneath it will
move up a line.

 Creating output formats

 63 9-8-2022

9. Right-click the right or left border of the HTML field (where the
cursor changes into a double arrow) and choose Properties in the
pop-up menu. (See that you do not open the properties of the Box
by accident.) Now enter the Tag of the HTML field, AB in our

example, and set the other properties as desired. In this example,

the field should be set to Repeated because the old field was
repeatable too.

10. Save the changes in the screen and you are done.

Restart Adlib to be able to admire the result. In an existing record, the
adjusted screen in display mode will present existing HTML field con-

tents as plain text at first. The text has no layout yet and hasn’t been

stored as HTML code either. Put the record in edit mode to apply lay-
out. Note that existing text in this converted field will only be saved as
HTML when you have placed the cursor in this field once and saved
the record again.

As soon as the cursor is in the HTML field in edit mode, a floating
toolbar appears, to lay out the text.

Creating output formats

9-8-2022 64

The buttons have the following meaning:

Text layout buttons for HTML fields

Choose a font type.

Apply bold layout to text.

Apply italic layout to text.

Underline text.

Align text to the left.

Centre text.

Align text to the right.

Number the paragraphs.

Place bullets in front of paragraphs.

Reduce the indentation.

Enlarge the indentation.

Insert a horizontal line.

The buttons largely work the same way as they do in Windows text
editors. For instance, you must first type text, select it or just a part
of it, and then apply a layout to it.
Moreover, you can copy (Ctrl+C) formatted text from other Windows

applications, like Microsoft Word, and paste (Ctrl+V) it in an HTML

field, or vice versa, while conserving the layout. However, when copy-

 Creating output formats

 65 9-8-2022

ing from within Word, it is possible that not all layout characteristics

will be included, like the colour of text for instance.

For inserting new lines you can use Enter for a new paragraph, and

Shift+Enter to begin a new line within the same paragraph.

After layout has been applied the text might look as follows, for ex-

ample:

From Adlib 7.1, you can edit the HTML code itself in a separate win-

dow. If you know how to code HTML, you can use it to include URLs to
images or websites, create tables and apply other possibilities of
HTML; you just can’t use CSS styles though.

Right-click an HTML field in the running application and select Edit the
HTML source in the pop-up menu which opens. The HTML Source Edi-
tor window opens. The HTML of already present field content will be

shown. Here you can adjust the HTML code directly. It’s possible as

well to copy (Ctrl+C) and paste (Ctrl+V) code from and to this editor,

which might be convernient if you prefer to edit your HTML code in a
different HTML (web page) editor first. Click OK to close the window.
The result of your changes can be viewed in the Adlib record.

The HTML code in these fields always starts and ends with <div> and

</div> respectively, and has no <body> tags or <head> section. If you

Creating output formats

9-8-2022 66

add <body> tags or a <head> section anyway, then these will be re-

moved as soon as you click OK. When you click OK, the HTML will also
be adjusted automatically to allow it to be saved within the (XML)

storage format of the Adlib record. Any indentation and layout of the
HTML code itself will be removed as well, so that the code will be dis-
played as a single paragraph of text next time you open the editor;
since such a cluttered presentation makes it hard to edit the code, we
recommend to keep the code relatively short.

In the example above you can see that in the HTML field an image (of
the Adlib logo) is retrieved and a table has been created, which is only

possible here by adjusting the HTML code itself.

2.5.1 Printing, export and wwwopac output

The laid out text in HTML fields can only be printed correctly to Word

templates or XSLT stylesheets which have been set up as output for-
mats. In Adlib you can print to output formats and Word templates via
the Print wizard of course. In principle, you must create these tem-
plates or stylesheets yourself, but Word templates do not require any
special instructions: you can refer to the field tag normally. An exam-
ple XSLT stylesheet can be seen below.

If you still print HTML fields via an adapl (also via the interactive Print

wizard method), then the HTML field contents will be printed as it is
stored: the layout won’t be visible but the HTML codes will be.

When you export records with HTML fields, the HTML field contents
will be extracted as HTML code: the code begins and ends with <div>

and respectively </div>, and has no <body> or <head> tags. When

exporting to XML, the HTML field contents will be produced as HTML
within the XML field tags; the same applies to the XML search result of
wwwopac.ashx. An Adlib Internet Server web application uses XSLT
stylesheets to convert the XML output of wwwopac.ashx to HTML.
For both printing and web display, XSLT stylesheets need to be coded

for HTML fields as follows, like for the label.text field in our exam-

ple:

<xsl:template match="label.text">

 <xsl:value-of select="." disable-output-escaping="yes"/>

</xsl:template>

A complete example stylesheet (made for unstructured XML) which
you can set up as an output format in Adlib is the following:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" indent="yes"/>

 <xsl:template match="/adlibXML">

 Creating output formats

 67 9-8-2022

 <xsl:apply-templates select="recordList"/>

 </xsl:template>

 <xsl:template match="recordList">

 <xsl:apply-templates select="record"/>

 </xsl:template>

 <xsl:template match="record">

 <html>

 <head>

 </head>

 <body>

 <xsl:apply-templates select="object_number"/>

 <xsl:apply-templates select="label.text"/>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="object_number">

 <p>

 <xsl:text>Object: </xsl:text>

 <xsl:value-of select="."/>

 <xsl:apply-templates select="../object_category"/>

 </p>

 </xsl:template>

 <xsl:template match="object_category">

 <xsl:text> (</xsl:text>

 <xsl:value-of select="."/>

 <xsl:text>)</xsl:text>

 </xsl:template>

 <xsl:template match="label.text">

 <table border="1" cellpadding="10" cellspacing="0"

 style="border-collapse: collapse" bordercolor="#808080"

 width="100%">

 <tr>

 <td width="100%">

 <xsl:value-of select="." disable-output-escaping="yes"/>

 </td>

 </tr>

 </table>

 </xsl:template>

</xsl:stylesheet>

2.5.2 Notes

• Font types for the Adlib interface, which you can set via the View
> Change font menu, have no effect on the font types in HTML
fields.

• Existing, filled-in RTF fields cannot be converted to HTML fields.

Creating output formats

9-8-2022 68

• After the conversion, hard and soft returns in the relevant text

fields have been converted to HTML
 tags.

• The first time you print a record with an HTML field to a Word

template, Word may ask if you would like to set Word as the
standard editor for HTML pages. Answer No if you don’t want that,
and Yes if you are fine with it. Either way, the resulting printout
may not be okay after that. Then try to print again. Microsoft
Word shouldn’t pose the question anymore, and the printout must
now be correct.

 69 9-8-2022

3 Stylesheets for Adloan slips

From within Adloan Circulation you can print issue slips, return slips
and reservation slips for the borrower, to remind him or her about any
borrowed, returned or reserved copies.

The contents of these slips (fixed texts and Adlib field references) are
determined by special templates in the Adlib \executables folder,
which you can edit.

In old Adloan versions, these templates were made up by six types of
.rtf files (you can edit these in WordPad): islipall#.rtf, islipone#.rtf,
dslipall#.rtf, dslipone#.rtf, rslipall#.rtf and rslipone#.rtf, in which #
stands for an Adlib language number (English = 0, Dutch = 1, French
= 2, German = 3, Arabic = 4, Italian = 5, Greek = 6, Portuguese = 7,
Russian = 8, Swedish = 9, Hebrew = 10, Danish = 11, Norwegian =
12, Finnish = 13 and Chinese = 14).

However, from Adloan version 7.2.15061.3 or 7.3.15065 six XSLT
templates (which have more possibilities than the .rtfs), plus a single
XML file containing fixed texts in different translations are used by

Stylesheets for Adloan slips

9-8-2022 70

Adloan by default.

If you start using a new Adloan version but you have no desire to use

the XSLT stylesheets, then simply remove them from the \executables
folder and store them in a backup folder somewhere else: Adloan will
then revert to using the old .rtf templates.
If you’d like Adloan to use the XSLT stylesheets, make sure the follow-
ing files reside in the Adlib \executables subfolder:

• issue-list-all.xsl (replaces islipall#.rtf) to generate the Overall

issue slip.

• issue-list-one.xsl (replaces islipone#.rtf) to generate the issue
slip for one or more selected copies.

• return-list-all.xsl (replaces dslipall#.rtf) to generate the Overall
return slip.

• return-list-one.xsl (replaces dslipone#.rtf) to generate the re-
turn slip for one or more selected copies.

• reservation-list-all.xsl (replaces rslipall#.rtf) to generate the
Overall reservation slip.

• reservation-list-one.xsl (replaces rslipone#.rtf) to generate the
reservation slip for one or more selected copies.

• adloanListTranslations.xml in which all required translations of

the fixed texts in the slips are or can be included, amongst which
the name of your institution and possibly a contact e-mail address.

An e-mail address will be printed in large underneath the institu-
tion name.

You can edit all files in a text editor like Windows Notepad, Note-
pad++ or Visual Studio, to customize the design and fixed texts, for
example, or to add the logo of your institution.

In adloanListTranslation.xml for example, replace the fixed text place-

holder_for_institution_name in language 0 (English) by your own insti-
tution name. If you’re not always displaying Adloan Circulation in Eng-

lish, you should enter your institution name for those other languages
as well: de language numbers are explained in the XML document
itself.
An e-mail address for information requests can be entered in the next
<translation> node instead of placeholder_for_e-mail_address. If

you don’t want any e-mail address to be printed then simply remove

the placeholder_for_e-mail_address text, but do leave the surrounding
XML <outputtext> tags where they are. And instead of an e-mail

address you might as well enter the URL to your website here.

 Stylesheets for Adloan slips

 71 9-8-2022

<translation name="institution name">
 <outputtext language="0">placeholder_for_institution_name</outputtext>
 <outputtext language="1">ruimte_voor_instellingsnaam</outputtext>
 <outputtext language="2">espace_réservé_pour_nom_d'institution
 </outputtext>
 <outputtext language="3">Platzhalter_für_Institutionsname</outputtext>
 <outputtext language="4">placeholder_for_institution_name</outputtext>
 <outputtext language="5">placeholder_for_institution_name</outputtext>
 <outputtext language="6">placeholder_for_institution_name</outputtext>
</translation>
<translation name="e-mail address">
 <outputtext language="0">placeholder_for_e-mail_address</outputtext>
 <outputtext language="1">placeholder_for_e-mail_address</outputtext>
 <outputtext language="2">placeholder_for_e-mail_address</outputtext>
 <outputtext language="3">placeholder_for_e-mail_address</outputtext>
 <outputtext language="4">placeholder_for_e-mail_address</outputtext>
 <outputtext language="5">placeholder_for_e-mail_address</outputtext>
 <outputtext language="6">placeholder_for_e-mail_address</outputtext>
</translation>

The other fixed texts can be adjusted too, but don’t change anything

in between < and > brackets.

If for any desired language an Adlib language number does exist while
no <outputtext> lines are present for that language yet, then you

may add those lines yourself.

In the .xsl files you don’t need to change anything per se, unless you

would like to have an image (the logo of your institution for example)
inserted at the top of the printout or wish to change the layout of the
slips. In the first case you’ll only have to edit a single line of code:

1. For 7.3, place the desired image file in the folder one level up
from your Adlib \Library loans management subfolder. This is
probably your main Adlib folder.

2. Look for the following line of (HTML) code: <img
src="books.jpg" width="150px" heigth="250px"/>

3. Substitute books.jpg by the actual name of your image file.

4. Enter the desired maximum width and height of the image and
save the changes.

5. From within Adloan, now print the relevant slip to test your
changes.
If you do not actually want to print anything to the printer you can

show a preview on screen by keeping the Shift key pressed down

when selecting the relevant pop-up menu option (like Overall is-
sue slip).

Stylesheets for Adloan slips

9-8-2022 72

6. Execute the above changes in all six XSLT stylesheets if you’d like

the changes to become visible in all types of slips.

In the second case, where you’d like to change the layout of the slips
you’ll have to have some knowledge of CSS and XSLT, as explained in
this manual, and you’ll have to know about the XML output which Ad-
loan generates.

3.1 Available Adloan XML output

The three transaction types (issues, returns and reservations) basical-
ly generate the same XML, with some minor differences.

• The <type> node in the <request> section of all XML will contain

one of the values issue, discharge or reserve, depending on

which type of slip the user is printing.

• The <mode> node in the <request> section of all XML will contain

either the value one (the XML will contain only a single item) or

all (the XML will contain all items), depending on which print op-

tion the user selected.

• The <language> node in the <request> section of all XML will

contain the current interface language of Adloan Circulation. This

will be the language in which the fixed texts from adloanListTrans-

lation.xml will be printed.
Currently available language numbers are: English = 0, Dutch =
1, French = 2, German = 3, Arabic = 4, Italian = 5, Greek = 6,
Portuguese = 7, Russian = 8, Swedish = 9, Hebrew = 10, Danish
= 11, Norwegian = 12, Finnish = 13 and Chinese = 14.

◼ Issues

<adlibXML>

 <recordList>

 <record>

 <request>

 <type>issue</type>

 <mode>all</mode>

 <language>1</language>

 <location>main</location>

 <date>29/04/2015</date>

 <time>10:26</time>

 </request>

 <borrower>

 <id>001</id>

 <name>Bourne, Jason</name>

 <category>personel</category>

 </borrower>

 <item>

 <copyId>01421</copyId>

 Stylesheets for Adloan slips

 73 9-8-2022

 <catalogueId>38463</catalogueId>

 <title>Lord of the rings: part 1,2,3</title>

 <issueDate>03/03/2015</issueDate>

 <issueTime>10:26</issueTime>

 <dueDate>16/05/2015</dueDate>

 <dueTime>16:00</dueTime>

 <location>main</location>

 <shelfMark>4892.32</shelfMark>

 </item>

 <item>

 <copyId>03801</copyId>

 <catalogueId>92357</catalogueId>

 <title>Steam engines</title>

 <issueDate>01/03/2015</issueDate>

 <issueTime>11:33</issueTime>

 <dueDate>14/05/2015</dueDate>

 <dueTime>16:00</dueTime>

 <location>main</location>

 <shelfMark>1372.88</shelfMark>

 </item>

 </record>

 </recordList>

</adlibXML>

Note:

• The XML applies to both issue-list-all.xsl and issue-list-one.xsl, but

the XML for issue-list-one.xsl will contain only one <item> node

whereas the XML for issue-list-all.xsl may contain multiple <item>

nodes. (You can’t change the names of these stylesheets.)

◼ Returns

<adlibXML>

 <recordList>

 <record>

 <request>

 <location>main</location>

 <date>29/04/2015</date>

 <time>10:26</time>

 <type>discharge</type>

 <mode>all</mode>

 <language>1</language>

 </request>

 <borrower>

 <id>001</id>

 <name>Bourne, Jason</name>

 <category>personel</category>

 </borrower>

 <item>

 <copyId>01421</copyId>

 <title>Lord of the rings: part 1,2,3</title>

 <dueDate>16/05/2015</dueDate>

 <dueTime>16:00</dueTime>

Stylesheets for Adloan slips

9-8-2022 74

 <returnDate>29/04/2015</returnDate>

 <returnTime>10:26</returnTime>

 <location>main</location>

 <shelfMark>4892.32</shelfMark>

 </item>

 <item>

 <copyId>03801</copyId>

 <title>Steam engines</title>

 <dueDate>16/05/2015</dueDate>

 <dueTime>16:00</dueTime>

 <returnDate>29/04/2015</returnDate>

 <returnTime>10:26</returnTime>

 <location>main</location>

 <shelfMark>1372.88</shelfMark>

 </item>

 </record>

 </recordList>

</adlibXML>

Note:

• The XML applies to both return-list-all.xsl and return-list-one.xsl,
but the XML for return-list-one.xsl will contain only one <item>

node whereas the XML for return-list-all.xsl may contain multiple
<item> nodes. (You can’t change the names of these stylesheets.)

◼ Reservations

<adlibXML>

 <recordList>

 <record>

 <request>

 <location>main</location>

 <date>05/03/2015</date>

 <time>10:26</time>

 <type>reserve</type>

 <mode>all</mode>

 <language>1</language>

 </request>

 <borrower>

 <id>001</id>

 <name>Bourne, Jason</name>

 <category>-</category>

 </borrower>

 <item>

 <copyId>01421</copyId>

 <title>Lord of the rings: part 1,2,3</title>

 <reservationDate>16/05/2015</reservationDate>

 <expiryDate>08/06/2015</expiryDate>

 </item>

 <item>

 <copyId>00272</copyId>

 <catalogueId>187</catalogueId>

 <title>Legislation</title>

 <reservationDate>05/03/2015</reservationDate>

 <expiryDate>12/06/2015</expiryDate>

 Stylesheets for Adloan slips

 75 9-8-2022

 <location>main</location>

 </item>

 </record>

 </recordList>

</adlibXML>

Note:

• The contents of an <item> node depends on whether a reservation

has been made on copy number or on catalogue number. The ex-
ample above shows both cases.

• The XML applies to both reservation-list-all.xsl and reservation-
list-one.xsl, but the XML for reservation-list-one.xsl will contain

only one <item> node whereas the XML for reservation-list-all.xsl

may contain multiple <item> nodes. (You can’t change the names

of these stylesheets.)

3.2 Adloan version differences

Note that this functionality really is supported from Adloan version
7.2.15061.3, but then you won’t find the XSLT stylesheets and the
XML file in the \executables folder by default. However, you can re-
quest those files from our helpdesk if you want.

Further, Adloan 7.2 deviates from 7.3 in that an image of your own to

be referred to from within the stylesheets, must be located in the ap-

plication folder itself, in \Library loans management for example, not
the higher folder.

 77 9-8-2022

4 A web browser box display format

4.1 Web browser box setup

From 6.6.0 you can place a special web browser box on a screen in
your application, to display record data as a web page. The box is only
meant for display, and possibly printing, but not for editing.

You do need an XSLT stylesheet for this: under the hood of Adlib, all
data is processed as XML, and with an XSLT stylesheet that XML can
be transformed to HTML, for example, while HTML can be displayed as
a web page in a web browser and in a web browser box in Adlib.

Such a web browser box can be useful when you want to present the
user of Adlib with a nice presentation of the record in a single box. Or

maybe you have a website which displays records in detail, and you
would like to have the same presentation available in Adlib as well, so
that during record entry a registrar can already see how the record
will look on the website. Every time the screen is redrawn during entry
or editing, for instance when you switch tabs, the web page display
will be updated. You can implement a web browser box as follows:

1. Create an XSLT stylesheet to transform the grouped XML of rec-

ords from a certain database into HTML; see the next paragraph
for an example. The example code contains an assumed, fixed rel-

ative path to the images folder: you should change this path to
the (path to the) folder which actually contains your images. You
are of course free to further adjust this stylesheet to your re-
quirements. Place the stylesheet in a suitable location in your
Adlib Software folder, maybe the folder with the name of the ap-

plication, or in a new \stylesheets or \xslt subfolder.

2. Suppose you would like to be able to view an object record as a
web page, then search your object catalogue for a screen with
enough empty space to hold the web page presentation (under-
neath or between the field rows, but not to the right of them), or
create a new screen. In this example we use the docfarch.fmt

screen (Documentation (free)). Open the selected screen in the
Screen editor of Adlib Designer.

3. Click Insert > Web browser control in the menu bar. A box with
the icon of a globe will be placed on the screen. Drag it to the
desired spot and make the box as big as you like by dragging its
edges. When the HTML page is shown on this screen in your Adlib
application, the box will have this exact size and cannot be

adjusted there.

A web browser box display format

9-8-2022 78

4. Right-click the new box and choose Properties in the pop-up menu
which opens. There’s only one option available. Click the … button
to search for the desired XSLT stylesheet on your system. The
path to the file must be relative to the application folder, and the
.xslt extension must be present behind the file name.

5. Save the changes in the screen and view the result in Adlib by
opening a record and switching to the adjusted tab.

 A web browser box display format

 79 9-8-2022

You can copy the web page display if you want, and paste it in a Word
document. Right-click the display and choose Select all. Press Ctrl+C

to copy everything. Switch to your Word document and paste the text
(Ctrl+V).

If you like, you can even print the web page display directly. Right-
click the display and choose Print… in the pop-up menu. With the
standard Windows print dialog you can then actually start the printing.
It is possible that on the printout a page numbering, date and other
header and footer information can be seen, and that background
colours won’t print. This is caused by page settings in Internet

A web browser box display format

9-8-2022 80

Explorer, because the web browser box uses IE functionality for

printing. In Internet Explorer 9 you can change these settings via the

menu in the web browser (press Alt) File > Page setup or via the

Tools button (Alt+X) Print > Page setup. For example, mark the Print

background colours and images option to be able to print background

colours. The headers and footers can be changed here as well.

4.1.1 Examples

Earlier in this manual, we already learned what the grouped XML

formgenereated by adlwin.exe looks like, but if you’re still unsure
about it, there’s an easy way here to find out how the record XML is
structured exactly, after the finishing the above setup. You don’t need

to have an advanced stylesheet already or even one that works, to be
able to view the XML. Right-click the web browser box in your active
Adlib application and choose View > Record XML in the pop-up menu.
The entire contents of the record will be diplayed as XML in Windows

NotePad. To obtain a better presentation of the XML, you can save the
file with the .xml extension, and double-click it in Windows Explorer.
The file will open in a program able to display XML properly, like In-
ternet Explorer. Now, the XML structure is clear and you’ll be able to
customize your stylesheet efficiently.

Via the same pop-up menu you can display the generated HTML as
well. Your stylesheet must convert the record XML into HTML and the

result can be shown with View > Page source. Correct HTML code will
be presented only if your stylesheet works properly.

An example of a bilingual* XSLT stylesheet which transforms the
grouped XML of Collect records into HTML, and can be used for a web
browser box on an Adlib screen, is the following:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" encoding="UTF-8" indent="yes"/>

 <xsl:param name="ui_language"></xsl:param>

 <xsl:template match="/adlibXML">

 <html>

 <head>

 <meta http-equiv="X-UA-Compatible" content="IE=edge" />

 </head>

 <body>

 <xsl:apply-templates select="recordList"/>

 </body>

 </html>

 </xsl:template>

 A web browser box display format

 81 9-8-2022

 <xsl:template match="recordList">

 <xsl:apply-templates select="record"/>

 </xsl:template>

 <xsl:template match="record">

 <p>

 <xsl:apply-templates select="priref"/>

 <xsl:apply-templates select="object_number"/>

 </p>

 <xsl:if test="count(Object_name) != 0">

 <p>

 <table border="1" cellpadding="10" style="border-collapse:

 collapse" width="100%">

 <tr>

 <td width="100%" bgcolor="#EAEAFF">

 <p>

 <xsl:apply-templates select="Object_name"/>

 <xsl:apply-templates select="other_name"/>

 </p>

 <xsl:apply-templates select="Description"/>

 <xsl:if test="Production/creator[@linkref] != '0'">

 <p>

 <xsl:apply-templates select="Production"/>

 </p>

 </xsl:if>

 </td>

 </tr>

 </table>

 </p>

 </xsl:if>

 <p>

 <table border="1" cellpadding="10" style="border-collapse:

 collapse" width="100%">

 <tr>

 <td width="100%" bgcolor="#F9F9F9">

 <p>

 <xsl:if test="physical_description != '' or

 Dimension/dimension.value != ''">

 <xsl:choose>

 <xsl:when test="$ui_language = 1">

 <xsl:text>Fysieke beschrijving:</xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>Physical description:</xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

A web browser box display format

9-8-2022 82

 <xsl:apply-templates select="physical_description"/>

 <xsl:if test="Material/material/term != ''

 or Dimension/dimension.value != ''">

 <p>

 <xsl:if test="Material/material/term != ''">

 <xsl:apply-templates select="Material"/>

 </xsl:if>

 <xsl:if test="Dimension/dimension.value != ''">

 <xsl:if test="Material/material/term != ''">

 <xsl:text>, </xsl:text>

 </xsl:if>

 <xsl:apply-templates select="Dimension"/>

 </xsl:if>

 <xsl:text>.</xsl:text>

 </p>

 </xsl:if>

 <xsl:if

 test="Reproduction/reproduction.reference[@linkref]!='0'">

 <p>

 <xsl:apply-templates

 select="Reproduction/reproduction.reference"/>

 </p>

 </xsl:if>

 </p>

 </td>

 </tr>

 </table>

 </p>

 </xsl:template>

 <xsl:template match="reproduction.reference">

 <p>

 </p>

 </xsl:template>

 <xsl:template match="priref">

 <xsl:if test="position() = 1">

 <xsl:text>Record: </xsl:text>

 <xsl:value-of select="."/>

 </xsl:if>

 </xsl:template>

 <xsl:template match="object_number">

 <xsl:text>Object: </xsl:text>

 <xsl:value-of select="."/>

 <xsl:apply-templates select="../object_category"/>

 </xsl:template>

 <xsl:template match="object_category">

 <xsl:text> (</xsl:text>

 <xsl:value-of select="normalize-space(term)"/>

 <xsl:text>)</xsl:text>

 </xsl:template>

 A web browser box display format

 83 9-8-2022

 <xsl:template match="Object_name">

 <xsl:if test="position() > 1">

 <xsl:text> & </xsl:text>

 </xsl:if>

 <xsl:value-of select="object_name/term"/>

 </xsl:template>

 <xsl:template match="other_name">

 <xsl:text>, other name: </xsl:text>

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="physical_description">

 <xsl:value-of select="."/>

 </xsl:template>

 <xsl:template match="Description">

 <xsl:if test="description != ''">

 <xsl:value-of select="description"/>

 </xsl:if>

 </xsl:template>

 <xsl:template match="Material">

 <xsl:choose>

 <xsl:when test="position() = 1">

 <xsl:choose>

 <xsl:when test="$ui_language = 1">

 <xsl:text>Gemaakt van </xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>Made of </xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> & </xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:value-of select="material/term"/>

 </xsl:template>

 <xsl:template match="Dimension">

 <xsl:if test="position() > 1">

 <xsl:text>, </xsl:text>

 </xsl:if>

 <xsl:value-of select="dimension.type/term"/>

 <xsl:if test="dimension.part != ''">

 <xsl:text> (</xsl:text>

 <xsl:value-of select="dimension.part"/>

 <xsl:text>)</xsl:text>

 </xsl:if>

 <xsl:text> </xsl:text>

A web browser box display format

9-8-2022 84

 <xsl:value-of select="dimension.value"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="dimension.unit/term"/>

 </xsl:template>

 <xsl:template match="Production">

 <xsl:variable name="pos" select="position()"/>

 <xsl:choose>

 <xsl:when test="$pos = 1">

 <xsl:choose>

 <xsl:when test="$ui_language = 1">

 <xsl:text>Vervaardigd door </xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>Created by </xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> & </xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:apply-templates select="creator"/>

 <xsl:if test="position() = last()">

 <xsl:apply-templates select="../Production_date[1]"/>

 </xsl:if>

 </xsl:template>

 <xsl:template match="Production_date">

 <xsl:text> </xsl:text>

 <xsl:choose>

 <xsl:when test="(production.date.start!=production.date.end)

 and (production.date.end != '')">

 <xsl:choose>

 <xsl:when test="$ui_language = 1">

 <xsl:text>tussen </xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>between </xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:value-of select="production.date.start"/>

 <xsl:choose>

 <xsl:when test="$ui_language = 1">

 <xsl:text> en </xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> and </xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 <xsl:value-of select="production.date.end"/>

 <xsl:text>.</xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text> in </xsl:text>

 A web browser box display format

 85 9-8-2022

 <xsl:value-of select="production.date.start"/>

 <xsl:text>.</xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <xsl:template match="creator">

 <xsl:choose>

 <xsl:when test="contains(name, ',')">

 <xsl:value-of select="substring-after(name , ',')"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="substring-before(name , ',')"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="name"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

</xsl:stylesheet>

* More Adlib parameters for XSLT stylesheets

When the detail screen containing the web browser control is
formatted for display, three parameters (system variables) are passed
to the XSLT stylesheet: the currently selected data language, the
current user interface language and the background color of the Adlib
screen. These parameters must be used as follows:

• ui_language – the current user interface language as referenced

in Adlib. For example, English is 0, while Dutch is 1. You can use
this to present fixed texts in the display in the current interface

language. See the code of the example stylesheet presented
above (MuseumRecordInWebBrowserControl.xslt) for a way to use
this parameter. This parameter can also be used in output and
export formats.

• data_language – the currently selected data language as an IETF

language tag. Examples of these IETF language codes are: 'en-

GB', 'en-US', 'nl-NL', 'de-DE', 'fr-FR'. In an XSLT stylesheet

for a multilingual Adlib SQL or Adlib Oracle database you can use
this parameter for conditional purposes, for example:

<xsl:when test="$data_language = 'nl-NL'">

 <img border="0" src="flag_netherlands.gif" width="48"

 height="48"/>

</xsl:when>

This parameter can also be used in output and export formats.

http://www.adlibsoft.com/support/downloads/example-xslt-stylesheets

A web browser box display format

9-8-2022 86

In the image below you can observe a possible application of this

functionality, for a multilingual page title field. See the example
MultilingualRecordInWebBrowserControl.xslt stylesheet (shown
below) for the code behind this presentation.

• background_color – the background color of the screen as a

hexadecimal HTML colour code (#rrggbb). You can use this
parameter to provide the HTML page with the same background
colour as the Adlib screen, if desired. This parameter cannot be

used in output and export formats.

To use the parameters in a stylesheet, declare them as a regular XSLT
parameter without a default value (because it will be overwritten
anyway) somewhere in the file, for example:

<xsl:param name="background_color"></xsl:param>

<xsl:param name="data_language”></xsl:param>

<xsl:param name="ui_language"></xsl:param>

The background color can be used like this, for example:

<style type="text/css">

 body { background: <xsl:value-of select="$background_color"/>; }

</style>

The following MultilingualRecordInWebBrowserControl.xslt example

XSLT file is primarily meant to show the principle of processing a

multilingual field in XSLT:

http://www.adlibsoft.com/support/downloads/example-xslt-stylesheets
http://www.adlibsoft.com/support/downloads/example-xslt-stylesheets

 A web browser box display format

 87 9-8-2022

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" encoding="UTF-8" indent="yes"/>

<xsl:param name="data_language"></xsl:param>

<xsl:template match="/adlibXML">

 <html>

 <head>

 </head>

 <body>

 <xsl:apply-templates select="recordList"/>

 </body>

 </html>

</xsl:template>

<xsl:template match="recordList">

 <xsl:apply-templates select="record"/>

</xsl:template>

<xsl:template match="record">

 <xsl:text>Currently selected data language:</xsl:text>

 <table border="0" cellpadding="5" cellspacing="0"

 style="border-collapse: collapse" bordercolor="#111111"

 width="49">

 <tr><td width="49" valign="top">

 <xsl:choose>

 <xsl:when test="$data_language = 'nl-NL'">

 <img border="0" src="flag_netherlands.gif" width="48"

 height="48"/>

 </xsl:when>

 <xsl:when test="$data_language = 'en-GB'">

 <img border="0" src="flag_great_britain.gif" width="48"

 height="48"/>

 </xsl:when>

 <xsl:when test="$data_language = 'fr-FR'">

 <img border="0" src="flag_france.gif" width="48"

 height="48"/>

 </xsl:when>

 <xsl:when test="$data_language = 'de-DE'">

 <img border="0" src="flag_germany.gif" width="48"

 height="48"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text><missing image></xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </td></tr>

 </table>

A web browser box display format

9-8-2022 88

 <p>

 <xsl:text>All other translations of the page

 title:</xsl:text>

 <table border="1" cellpadding="5" cellspacing="0"

 style="border-collapse: collapse" bordercolor="#111111"

 width="400">

 <xsl:apply-templates select="page_title"/>

 </table>

 </p>

</xsl:template>

<xsl:template match="page_title">

 <xsl:if test="(@lang='nl-NL' and $data_language != 'nl-NL') or

 (@lang='en-GB' and $data_language != 'en-GB') or

 (@lang='fr-FR' and $data_language != 'fr-FR') or

 (@lang='de-DE' and $data_language != 'de-DE')">

 <tr>

 <td width="49" valign="top">

 <xsl:choose>

 <xsl:when test="@lang='nl-NL'">

 <img border="0" src="flag_netherlands.gif" width="48"

 height="48"/>

 </xsl:when>

 <xsl:when test="@lang='en-GB'">

 <img border="0" src="flag_great_britain.gif"

 width="48" height="48"/>

 </xsl:when>

 <xsl:when test="@lang='fr-FR'">

 <img border="0" src="flag_france.gif" width="48"

 height="48"/>

 </xsl:when>

 <xsl:when test="@lang='de-DE'">

 <img border="0" src="flag_germany.jpg" width="48"

 height="48"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text><missing image></xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </td>

 <td width="351" valign="top">

 <xsl:value-of select="."/>

 </td>

 </tr>

 </xsl:if>

</xsl:template>

</xsl:stylesheet>

 A web browser box display format

 89 9-8-2022

4.1.2 Adding hyperlinks to your stylesheet

Every XSLT stylesheet for the current application will contain fixed
HTML code. That means you can also add URLs to web pages. Use
target="_blank" in the reference to have the link opened in your

default web browser. If you leave target="_blank" out, the web page

will open in the Adlib web browser box. Example:

Adlib

4.1.3 Error handling and testing

Any errors in the stylesheet will be shown inside of the web browser

control with line and column numbers, and an explanation for the fail-

ure.

Testing a stylesheet that you are still working on, is very easy. Once
you’ve set it up like explained above, and you are currently showing a
record in detailed display with the web browser box, you only need to
switch tabs to reload the stylesheet. So after every change in your
stylesheet, save it, switch tabs in Adlib, and you can see the effect of

your latest adjustment immediately.

 91 9-8-2022

5 Adlib Office Connect stylesheets

5.1 The Adlib Office Connect plugin

Adlib Office Connect is a plugin for Microsoft Office 2007 and 2010 (32
bit and 64 bit). In combination with an Adlib wwwopac.ashx server,
the plugin allows you to search your Adlib SQL database from within

Word, PowerPoint or Excel, with a very simple search interface: no
knowledge of Adlib applications and their user-interface is required.
Selected data from the search result can be copied to the current doc-
ument with a single mouse click, where the user can change the lay-

out as desired.

5.2 The standard stylesheets

On the server side of Office Connect, in the folder that contains
wwwopac.ashx, a number of XSLT stylesheets provide the means by
which data retrieved by wwwopac.ashx (in grouped XML format) is

tranformed to an HTML page. This HTML page is displayed in the Data
box in the Office Connect plugin and can be copied to the relevant
Microsoft Office document by clicking a button.
Each (database-specific) XSLT stylesheet, as can be selected in the
second drop-down list in the left upper corner of the plugin window,
specifies a layout type of the detailed display of a retrieved record,

Adlib Office Connect stylesheets

9-8-2022 92

excluding the image: the image retrieval and display is not handled by

the stylesheets. Once you’ve retrieved a record via the Office Connect

plugin, you can still choose how to present its textual data. By default
the user can choose between data in table form and a long or short
description*. When you insert the data into a Word document, it will
be copied in the layout you chose to present it in.

* On our demo server (http://demo.adlibsoft.com/officeConnect),
for the Collection database there is the Short presentation show-

ing the object number, object name, title and creator, the Long
presentation showing the record number, object number, object
name, description, creator, production dates and place, material,
and dimensions, all preceded by appropriate labels, and there is

the Table display which shows the institution name, the object
number, title, creator and material, which arranges the data in a
table with field names and borders.

Also in our demo application, for the Library database there is a
Table display showing the title, the author, material type, state-
ment of responsibility, the ISBN, publisher, place of publication,
pagination, notes, the shelf mark and copy number, which arrang-
es the data in a table with field labels and borders.
And finally, for the Collection of the Amsterdam Museum, there is a
Long presentation format present, showing the object number,

title, creator, object category and object name.

By editing the standard XSLT stylesheets (which can be found on your
Office Connect server, in the folder that contains wwwopac.ashx) or
by creating new ones, you can specify your own data layout. New
stylesheets must be placed in the same folder and must be referred to
in the <StyleSheets> section for the proper database in the AdlibCon-

nectPreferences.xml file. As mentioned, do not include any image ref-
erence in these stylesheets.

As an example, consider the simple_object_table.xslt stylesheet which
produces a result similar to:

field data

institution.name The Fitzwilliam Museum

object_number PD.44-1999

title A rider on a rearing horse

creator Leonardo da Vinci

material metalpoint

brown ink

paper

http://demo.adlibsoft.com/officeConnect

 A web browser box display format

 93 9-8-2022

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" indent="yes"/>

 <xsl:template match="/adlibXML">

 <xsl:apply-templates select="recordList"/>

 </xsl:template>

 <xsl:template match="diagnostic"/>

 <xsl:template match="recordList">

 <table border="1">

 <tr>

 <td>

 field</td>

 <td>

 data

 </td>

 </tr>

 <xsl:apply-templates select="record"/>

 </table>

 </xsl:template>

 <xsl:template match="record">

 <xsl:apply-templates select="institution.name"/>

 <xsl:apply-templates select="object_number"/>

 <xsl:apply-templates select="Title/title"/>

 <xsl:apply-templates select="Production/creator"/>

 <xsl:apply-templates select="Material/material"/>

 </xsl:template>

 <xsl:template match="record//*">

 <tr valign="top">

 <td>

 <xsl:if test="position() = 1">

 <xsl:value-of select="name()"/>

 </xsl:if>

 </td>

 <td>

 <xsl:value-of select="."/>

 </td>

 </tr>

 </xsl:template>

</xsl:stylesheet>

• The <diagnostic> node is matched, but nothing is currently done

with the metadata it contains.

• Each record will be contained in its own table. The first row con-
tains the field and data labels in separate columns. This is speci-
fied in the recordList template.

Adlib Office Connect stylesheets

9-8-2022 94

• For each <record> node, five field templates are applied which are

being matched by the record//* template: the // XPath expression

selects all nodes hierarchically down from the preceding node
(<record> in this case) that match the selection (* in this case, a

wildcard representing any possible element node) no matter
where they are.
Each of the five fields (if present in the retrieved data) will then be
inserted in its own table row. In front of the first occurrence of
each field, the field name will be printed: in the current standard

stylesheets, field names (as defined in the data dictionary, usually
not identical to screen field labels) in relevant layout types (like
the table display) are always inserted in English.

5.2.1 Adding interface language dependent texts

The XSLT stylesheets receive a language parameter (language), gen-

erated by the Adlib Office Connect plugin, which contains the IETF

language tag of the user interface language of Microsoft Office, e.g.
'en-US' or 'nl-NL'. This means that the standard stylesheets can be

adjusted to be able to print fixed texts in the current user interface
language. For example, add the following parameter declaration to
simple_object_table.xslt:

<xsl:param name="language"></xsl:param>

Then change the recordList template to the following, to make the

first column header interface language dependent:

<xsl:template match="recordList">

 <table border="1">

 <tr>

 <td>

 <xsl:choose>

 <xsl:when test="$language = 'nl-NL'">

 <xsl:text>veld</xsl:text>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>field</xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </td>

 <td>

 data

 </td>

 </tr>

 <xsl:apply-templates select="record"/>

 </table>

</xsl:template>

 A web browser box display format

 95 9-8-2022

Whenever the interface language of Microsoft Office is Dutch, the

Dutch column header will be used:

veld data

institution.name The Fitzwilliam Museum

object_number PD.44-1999

title A rider on a rearing horse

creator Leonardo da Vinci

material metalpoint

brown ink

paper

